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CHAPTER I

Introduction

Let H be a real Hilbert space with inner product < -,- > and norm || -

’

respectively , C be a nonempty closed convex subset of H and FP. be the metric

projection of H onto C. In the following , we denote by ” — ”

a strong convergence
and by 7 — 7 a weak convergence. Recall that a mapping S: C — C is called

nonexpansive , if
15z = Syl < [l — . (L.LD)

The set of fixed points of the mapping S is denoted by F(S). Recall that a mapping
A: C — H is called an « - inverse-strongly monotone[2] , if there exists a positive

real number « such that
(Az — Ay, z — y) > of|Ax — Ay|]>, Yo,y € C. (1.1.2)

Remark It is easy to see that if A: C' — H is an « - inverse-strongly monotone,
1

then it is a — - Lipschitzian mapping.
o

Let A: C — H be a mapping the classical variational inequality problem is to find

u € C such that
(Au,v —u) > 0,Yv € C. (1.1.3)

The set of solutions of variational inequality (1.1.3) is denoted by VI(C,A). Let
¢ : C x C — R be a bifunction for the function ¢ is to find a point x, € C' such

that

(z.,y) > 0,Vy € C. (1.1.4)



We denote the set of solution of the equiliibrium problem (1.1.4) by EP(¢).
Literature review

In 1977 Combettes and Hirstoaga [5] introduced an iterative scheme of finding
the best approximation to initial data when EP(¢) is nonempty and proved some
strong convergence theorem in Hilbert spaces.

In 2003, Takahashi and Totoda [14] proposed the iterative scheme for finding a

common element of F'(S)NVI(C,A) as shown in the following : z; € C' and

Tpi1 = pp + (1 — o) SPo(xy, — M\Ax,),n > 1 (1.1.5)

and obtained a weak convergence theorem in the framework of Hilbert space, where

{a,} is a sequence in (0,1) and {)\,} is a sequence in (0, 2«).

For finding a common element of F'(S)N EP(¢) , Takahashi and Takahashi
[13] introduced the following iterative scheme by the viscosity approximation method
in a Hilbert space : =7 € H and

Tn

(1.1.6)
Tpa1 = anf(zn) + (1 — ) Suyp, Vn > 1.

Recently, for finding a common element of F'(S) N VI(C,A) N EP(¢), Su, Shang
and Qin [11] introduced the following iterative scheme : x; € H

Tn

(1.1.7)
Tpt1 = A f(zn) + (1 — o) SPo(un, — A\Auy,),¥Yn > 1.

Under suitable conditions some strong convergence theorems are proved which extend

and improve the results of Iiduka et al.[7] and Takahashi et al.[13].



On the other hand, in order to find a common element of F'(S)NVI(C, A)N
EP(¢),very recently Plubtieng and Punpaeng [8] also introduced the following iter-

ative scheme : z; = v € C and

(

H(tn,y) + =y — Up, up — ,) > 0,Vy € C,

Tn

Un = Po(un, — AAuy,), (1.1.8)

Tpy1 = U+ 6n$n + VnSPC(yn - /\nAyn)
\

Under suitable conditions some strong convergence theorems are proved which extend

some recent results of Yao and Yao [15].



CHAPTER 1I

Preliminaries and lemmas

2.1 Preliminaries

In this section we recall some basic definitions which will be useful for the next

Chapter.

Definition 2.1.1 Hilbert space
Let H be an inner product space. Then H is called a Hilbert space if for each

bounded sequence {x,} of H , there exists a weakly convergent subsequence of
Definition 2.1.2 Closed set

Let H be a Hilbert space. A subset C' of H is called a closed set if {z,} C C and

x, — x imply x € C.

Definition 2.1.3 Convex set
Let C' be a subset of a Hilbert space H and scalar ¢ € (0,1) then C' is said to be

convex if tx + (1 —t)y € C for all z,y € C.

Definition 2.1.4 Nonexpansive mapping
The mapping 7' : C' — C' is said to be nonexpansive mapping if ||Tz — Ty|| <

||z —y|| for all z,y € C.

Definition 2.1.5 Contraction
Let C be a subset of Hilbert space. A mapping f: C'— C'is called a contraction on

C' if there is a positive real number o < 1 such that for all z,y € C',

1f (@) = FW)ll < e lle =yl , Yo,y € C.

Definition 2.1.6 Bounded sequence
A sequence {z,} in H is said to be bounded if there is M > 0 such that ||z,|| <

M for all n € N.



Definition 2.1.7 Strong convergence
A sequence {z,} in Hilbert space H is said to be strong convergence (or convergence

in the norm) if there is an x € H such that lim ||z, — z|| = 0.
n—oo

Definition 2.1.8 Fixed point

The point x is a fixed point of the mapping 7" if Tz = x.

Definition 2.1.9 Weakly lower semi continuous

If (z,y,) — (x,y0) (weakly), then ¢(z,yo) < liminf(z,y,).

Definition 2.1.10 : limit superior

limit superior of z,, is defined by lim sup z,, := lim sup(z,,).

n—00 nN—=X0 m>n

2.2 Lemmas

Let H be a real Hilbert space. It is well known that for any \ € [0, 1]
Az + (1= Nyll* = Al + (1= Nyl* = AL = Mz = yl*.
Let C' be a nonempty closed convex subset of H, for each x € H. there exists a
unique nearest point in C', denoted by Pcx, such that
[ = Pox|| < |z —yll,vy € C.
P is called a metric projection of H onto C. It is known that P is a nonexpansive

mapping and satisfies :
|Pox — Poyl|* < (Pox — Poy,x —y),Ya,y € C. (2.2.1)
Moreover, Pcx is characterized by the following property :

Pex € Cand (x — Pox, Pox —y) > 0,Vy € C. (2.2.2)



In the context of the variational inequality problem, this implies that
ueVI(C,A) & u= Po(u— NAu),VA > 0. (2.2.3)

A Banach space X is said to satisfy the Opial condition if for each sequence {z,}
in X which converges weakly to a point z € X ,we have

hr{gior.}f |zn — x| < lig'g.}f |z, —yll,Vy € X,y # z.
It is well known that each Hilbert space satisfies the Opial condition. A set-valued
mapping T : H — 2 is said to be monotone, if for all z,y € H, f € Tz, and
g € Ty imply that(f — g,z —y) > 0.
A monotone mapping 7' : H — H is said to be maximal [9] , if the graph
G(T) of T is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping is maximal, if and only if for (z, f) €
HxH((f—-gx—y) >0,Y(y,g) € G(T) imply that f € Tx.LetA: C — H
be an inverse-strongly monotone mapping and let Nov be the normal cone to C' at
v e Cle.,
Nev={we H : {v—u,w) >0,YVueC},

and define

Av+ Ngov,v € C
Ty = (2.2.4)

0,vecd.

Then 7 is maximal monotone and 0 € T if and only if v € VI(C,A) (see,for
example, [7]). For solving the equilibrium problem for bifunction ¢ : C' x C' — R,
let us assume that ¢ satisfies the following conditions :

(A1) o(x,x) =0,Vx € C ;

(A2) ¢ is monotone, i.e.,

P(z,y) + ¢y, x) <0,Va,y € C;



(A3) for any z,y,z € C the functional x — ¢(z,y) is upper hemicontinuous,
1.e.,
tl_i)%q+ supo(tz + (1 —t)x,y) < o(x,y), Vr,y,z € C;
(A4) y — ¢(z,y) is convex and weakly lower semi-continuous.
The following lemmas will be needed in proving our main results :
Lemma 2.1 ([1]). Let H be a real Hilbert space, C be nonempty closed convex
subset of H, ¢ : C' x C' — R be a bifunction satisfying the condition (Al) - (A4),

then , for any given x € H and r > 0 , there exists z € C' such that

1
Lemma 2.2 ([6]). Suppose all conditions in Lemma 2.1 are satisfied. For any given

r > 0 define a mapping 7, : H — C' as follows:
1
T (x)={z€C:¢(z,y) + ;(y —z,z—x)>0,Vy e C},z € H. (2.2.5)

Then the following conclusions hold :
(1) T, is single-valued :

(2) T’ is firmly nonexpansive, i.e.,
||T7”x - Try||2 S <Trm - Try,fb - y>vvxay € H.

This implies that ||T,.z — T,y|| < ||z — y||,Vx,y € H, i.e.,
T, is a nonexpansive mapping.

(3) F(T,) = EP(¢) , Vr > 0;

(4) EP(¢) is a closed and convex set.



Lemma 2.3 ([12]). Let X be a Banach space .{z,} , {y,} be two bounded se-

quence in X and {5, } be a sequence in [0, 1] satisfying

0 < liminf 8, < limsup g, < 1.

n—oo

Suppose that z,.1 = Gz, + (1 — 5,)yn, Vn > 1 and

im sup{||yn+1 — Ynl| = [|Zns1 — 20||} <0,
n—oo
then lim ||y, — z,|| = 0.
n—oo

Lemma 2.4 ([16]). Let {a,} and {b,} be two nonnegative real sequences satisfying

the following condition :

Ap1 < (1 —yn)an + by, Vn > ny,

where ng is some nonnegative integer , {7,} is a sequence

in (0,1) and {b,} is a sequence in R such that :

D D =00
n=1

(i) limsupb—n < 0or Z |b,] < o0.

n—oo n

Then lim a, =0 .

n—oo

n=1

Definition 2.1 ([10]). Let {S; : C — C} be a family of infinitely nonexpansive
mappings and {y;} be a nonnegative real sequence with 0< p; < 1,Vi > 1. For any

n > ldefine a mapping W,, : C' — C as follows:



(

Un,n—‘rl - ]-7
Un,n == ,unSnUn,nJrl + (1 - Mn)Ia

Un,n—l - ﬂn—lSn—lUn,n + (1 - ;un—l)la

Ung = teSkUgs1 + (1 — )1, (2.2.6)

Unji—1 = pk—1Sk—1Unse + (1 — pu—1)1,

Una = p125Un 3+ (1 — po)1,

Wy, =Upy = 1S1Up2 + (1 — py) 1.

Such a mapping W, is nonexpansive from C' to C' and it is called a W-mapping

generated by S,,,5,_1,...,51 and i, fhy_1, -, f1-

Lemma 2.5 (Shinoji et at.[10]). Let C be a nonempty closed convex subset of
a Hilbert space H , S; : C' — C' be a family of infinitely nonexpansive mappings with
N2, F(S;) # 0, {u;} be a real sequence such that 0 < p; < b < 1, Vi > 1. Then,

(1) W, is nonexpansive and F'(W,,) = ﬁ F(S;) for each n > 1 ;

(2) for each = € C and for each positi\ieZIinteger k , the limit lim U, ,x exists;

n—oo

(3) the mapping W : C' — C' defined by

Wz := lim W,z = lim U, 1z,z € C, (2.2.7)

n—oo n—oo



10

is a nonexpansive mapping satisfying F'(W) = ﬂF(SZ) and it is called the W-

mapping generated by 51,55, ... and pq, po, ...

Lemma 2.6 Let ' be a nonempty closed convex subset of a Hilbert space H ,
{S; : C — C'} be a family of infinitely nonexpansive mappings with m F(S;) #
0, {u;} be a real sequence such that0 < u; < b < 1,Vi > 1. If K is any bounded

subset of C', then

lim sup [|[Wx — W,z|| = 0. (2.2.8)

=0 xeK



11

Proof. Take p € ﬂF(Sz) Since K is a bounded subset of C' , there exists an

i=1
M > 0 such that sup ||z — p|| < M. Hence for any n > 1 and z € K , we have
zeK

[Wasiz = Wzl = [[Unp1a2 — Unaz|
= |lmSiUpt10z + (1 — )z — (S1Un2x + (1 — ) ||
< p||Unsr2w — Up x|
= | lp2S2Unta 32 4+ (1 — po)x — p12SoUn 3z — (1 — pio) |

< papel|Uns137 — Uns||

(T )1 Uns 10412 = Uniaz]

<
=1
= (H 1) || 1S4 1Unst ot + (1 = pngr)z — 2
=1
n+1
= (ITr)USnsrz = 2ll)
=1
n+1
< TL0Swsz = ol + llp — 2l)
=1
n+1 n+1
< 2] Jwllz —pll < 2] ] w)M. (2.2.9)
=1 i=1

Since 0 < p; < b < 1, for any given € > 0 , there exists a positive integer n, such

that
e(1—b)

protl <
2M




Hence for any positive integers m > n > ng , from (2.2.9) we have

J+1

m— m—1
Wiz = W] < Z [WiaWiall < 3 2M(] [ )
j=n j=n 7=1

— 2Mb”+1
Z ST <e,VreK.

In (2.2.10) letting m — oo, for any x € K , we have
|Wx —W,z|| <€ Vn > ng.
Therefore, we have

sup [|[Wz — Wyx|| < €,Vn > ny.
reK

This implies that lim sup [|[Wz — W,z|| = 0.

=0 zeK
The conclusion of Lemma 2.6 is proved.

12

(2.2.10)



CHAPTER III

Main results

3.1 Main Result

In this section, we shall extend the proof line for the strong convergence theorem
proposed by S. Chang et al. The iterative algorithm shown in this Theorem is con-
structed by using the viscosity approximation method for finding a common element
of the set of common fixed points for a family of infinitely nonexpansive mapping ,
the set of solutions of the variational inequality for an a-inverse-strongly monotone

mapping and the set of solutions of an equilibrium problem in Hilbert space.

Theorem 3.1.1 ([17]) Let H be real Hilbert space , C be a nonempty closed convex
subset of H, ¢ : C' x C' — R be a bifunction satisfying the condition (Al) - (A4)
, A: C — H an « - inverse-strongly monotone mapping {S; : C — C} be a
family of infinitely nonexpansive mappings with FNVI(C, A)NEP(¢) # () , where
F =2, F(S;) and f : H — H be a contraction mapping with a contractive
constant £ € (0, 1).

Let {z,},{yn}, {k.} and {u,} be the sequence defined by

(

1
¢(unuy> + _<y — Up, Up — xﬂ) > O, \V/y S C,

n

Tp4+1 = Oénf(xn) + ﬁnxn + ’7an]€717
(3.1.1)

Yn = PC’(un - )\nAun)a

\
where W, : C'— C is the sequence defined by (2.2.6) .{a,,} , {8.} and {7,}

are sequences in [ 0, 1], A, is a sequence in [a,b] C (0,2«) and {r,} is a sequence

in (0,00). If the following conditions are satisfied :
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(1) an+ﬁn+7n:1;

o0
(1) T}eroloan:O , Zan:oo;
n=1
(iii) 0 < liminf 3, <limsupf, <1 ;
n—0oo n—oo
[o¢]
@iv) liminf r, > 0, Z | a1 — T | < 005
n—oo =1
(V) lim sup ‘ >‘n+1 - /\n |: O;
n—oo

then {x,} and {u,} converge strongly to z € F N VI(C,A) N EP(¢), where
z = Pravic,anepr) f(2)-
Proof. We divide the proof of Theorem 3.1 into six steps:
(I) First , we prove that there exists z € C' such that 2 = Ppryc.a)neps) f(2)-
In fact, since f : H — H is a contraction with a contractive constant &, hence
Prrvie,anep)f : H — C is also a contraction, and
| Pravie,anepe) f(x) — Pravice,anere) f )| <€z =y, Yo,y € H.
By the Banach theorem, there exists a unique 2z € C such that 2 = Ppryrc,a)nepg)f (2).
(II) Now we prove that the sequences {z,}, {u,} and {k,} are bounded.
In fact, since A : C' — H is a-inverse-strongly monotone, for any z,y € C and

An € [a,b] C [0, 2a], we have

I =)z = (I = X)yll* = [z —y) — Au(Az — Ay)|*

= |lz =yl = 22Xz — y, Az — Ay) + X}[| Az — Ay|]”

< o=yl — 2 al|Az — Ay|® + A2|| Az — Ayl®
< o=yl + A — 20)[| Az — Ayl
<z =yl (3.1.2)

which implies that I — )\, A is nonexpansive. Let z* € FNVI(C,A) N EP(¢) and
let {7}, }be the sequence of mappings defined by (2.2.5) . It follows from Lemma2.2
and (2.2.3) that z* = P.(z* — A\, Az*) = T, z* and u, = T, x, . From (3.1.2) , we

have
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[k — 2| = || Pe(yn — AnAyn) — Pe(z* — Xy AzY)]|
< (yn — AnAyn) — (2" = XAz < |y, — 27|
= || Pe(un — MAuy) = Po(a* — A\ Az
< [(un = AnAun) = (2 = A Az”)|| < [luy — 27|

=Ty, 20 — Tr, 2| < ||lzn — 27|
This implies that

[ = 27| < Hlym = 27| < fJun = 27| <l — 27 (3.1.3)

By Lemma 2.5, x* = W,,z*, hence from (3.1.3) we have
Fonsr = 271 = s () + Buon + 1 Wakn — W
< @l f(zn) = ) + Bulln — | + Yulln — 2°]
< anllf(zn) — F@°) + F@) — 2] + Bullzn — 21 + alln — 2°]
< an(lf (@) — £+ £ @) = 1) + (Bo + )lln — 2]
— allf(z) — F@) + anll f&) — 2 + (1 = a2 — 2°)
< @tz — 27l + anll £ (%) — 2* + (1 — ) n — 27
— (ant + (1= an)lln — 2| + anll f () — 27|
= (1= (o = an)llen =" + (1= a1/ ) = °|
= (1= (L= Qan)lon — 2"+ (1 = e £a) ~ ]
1

< max{||z, — 2|, — [l f(z") — 27|

1-¢

1
< max{||x; — z*, EHf(x*) —a*| VYn>1
This shows that {x,,} is bounded. From (3.1.3) we know that {u,}, {k.}, {vn}, {Wak.},
{A(u,)}, {Ay,} and {f(z,)} all are bounded. Especially, {u,}, {kn},{yn}, {Whkn}

are bounded sequences in C'. Without loss of generality, we can assume that
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there exists a bounded set K C C such that

Uny knyyn € K, ¥n > 1. (3.1.4)

(III) Next we prove that ||z, +1 — || — 0.

In fact, since I — A\, A is nonexpansive, we have

Hkn+1 - an = HPC'<yn+1 - )\nJrlAynJrl) - PC'(yn - )\nAyn)H
< H(yn+1 - )\n+1Ayn+l) - (yn - )‘nAyn)H

= [|(Wnt1 — M1 AYns1) = (Un — Ap1AYn + A1 Ayn — M Ay, ||

||<yn+1 - )‘nJrlAynJrl) - (yn - )\n+1Ayn) + O‘nAyn - >‘n+1Ayn)H

< a1 = Ae1AYni1) — U — A1 Aya) | + A Ay — A1 Ayal|

< a1 = A1 AYnt1) = U — A1 Aya) | + (A — A [ Ay

< et = yall + A0 = A [[[ Ayl

= | Pe(unt1 — A1 Atnia) — Po(un — AnAun) || + (A0 = A || Aya|

< (untr = A1 Atngr) = (un — AnAun) || + (A = A [[| Ayn |

< (ntr = A1 Aungr) = (Un — AnprAug) || + [An = Apa | ([ Aun || +
1 Ayal)

< s = uall + 1A = A [([[Aun || + [[Ayal])- (3.1.5)

By Lemma 2.2 w,, = 1T}, ,xp, Upt1 = 15, Tpy1, We have

1

Tn+1

¢(un+1> y) + <y — Up41, Unt1 — xn-i—l) Z O, Vy S 07 (316)

1

T'n
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Take y = up4q in(3.1.7) and y = u,, in (3.1.6), then add these two inequalities. By

using condition (A2), we have

Uy — T u — X
n n n+1 n+1>20.

<un+1 — Up,
Tn Tn+1

Hence
r
<un+1 = Un, Up — Upt1 + Unpt1 — Tp — Tp — B (un—l—l - xn—l—l)) Z 0.
T'nt1
This implies that
r
||un+1 - un||2 < <un+1 — Up, Tpt1 — Ty + (1 - - )(un—i—l - xn-i—l))
Tnt1 r
< Junsr = w7 = 7all + 11 = ] s = 2o}
n+1

From condition (iv), without loss of generality, we can assume that r,, > c,

Vn > 1, hence we have

T
[tnt1 —unll < NlTpgr — @al| +]1 - - [[tng1 = T |
n+1
1
S Hzn+1 - wn” + E‘TnJrl - rn’ : M, (318)

where M = sup{||u, — x,||}. Substituting (3.1.8) into (3.1.5), we have
n>1

1
kot = kall - < Nz = zall + “fross —raf - M

+ A = Anal([[Aun]l + [[Aynl])- (3.1.9)

Letting z,,11 = (1 — )2 + Bnn, Vn > 1, then we have
an+1f($n+1) + 7n+1Wn+1kn+1 anf(xn) + ’Vankn

Zn+1 — Rp = 1— ﬁnJrl - 1 — ﬁn
Optq Qnt1 On
= ———(f(@n1) — fzn)) + - Ty,
1_%H(f( +1) — fxn)) (l_ﬁn+17 1_5”)]’;( )
L (Wogikner — Wakn) + (e — YWk
T Gy Vetkn s 1A



By condition (i),

Yn+1 Tn (7%
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Opi1

1_ﬁn+1_]—_ﬁn_1_ﬁn_]—_ﬁn+1’

and so we have

éanJrl Q41 Qp
201 — 2nl| 1—Bn+1” +1— Tl |1—ﬁn+1 1_ﬁnl{llf( )1 1}
b W — Wik, (3.1.10)
1- Bn—i—l
It follows from (3.1.9) that
||Wn+1kn+1 - Wnan - ||Wn+1kn+1 - Wkn-H + kan—i-l - Wk;n + kan - Wnkn”
< HWn—&-lkn—s-l - Wkn+1|| + HWkn-i-l - Wkn” + HWkn - Wnkn”
<

IN

_I_

SUp{[[War = Wz + |[We = Wazl} + [[kns1 =
xe

SUp{[[War = Wz + |[We = Wazll} + llon = 2l
xe

1
lrner = ral - M A P = A ([|Aua]| + ([ Agall). - G-1.1D)

where K is the bounded subset of C' defined by (3.1.4). By Lemma 2.6 we know

that

sup [|[Wzx — Wyz| — 0 (as n — o0). (3.1.12)
zeK

Substituting (3.1.11) into (3.1.10), after simplifying we have

an + n
v = 2l = s — ol < { £ gy =+
_ﬁn—i—l
Api1 Qp
— X o)l + IWLEnll b +
Lo e )l + Wkl

I up ([Wa — Wz + W — Waa||} +
1— ﬂnJrl zeK

1
Irner = ral - M A A = A ([ Ava | + ([ Aynl)-
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since w —1= w < 0, by conditions (ii)-(v), we have
1 - ﬂﬂri’l 1- BnJrl
limsup{(|Zp+1 — Zull = [[@ns1 — 2} < 0.

Hence from Lemma 2.3 we have

lim ||z, — z,|| = 0.
Consequently,
T s = 2all = Jim B+ (1= B) 2 —
=l [(—a)(1 = Ba) + (1 = Gzl

= lim (1 = 5,)| — zn + 2a||

= lim (1 — 5,)||zn — za|| = 0. (3.1.13)

(IV) Now we prove that ||W,k, — k,|| — 0. Since
Wk = Enll < [[Wakn = all + [0 — tnll + llun = Fall,
for the above purpose, it is sufficient to prove ||W,k, — z,|| — 0,
[z — tnll = 0, Jun = knll — 0.
(a) First we prove that ||z, — W,k,|| — 0. In fact, since «,, — 0 and
|Znt1 — zn|| — 0 we have
[0 = Waknll < |20 = nall + |01 — Wak||
= [len = Tl + lanf (n) + Buten + 3 Wikn — Wika|
= [lzn = Tl + [l f(2n) + Bt + (1= o = Bo) Wk — Wakin|
= |@n — Tog1|| + llanf (Tn) + Bun + Wik, — ap, Wk, —
BuWikn, — Wiky||
= [lzn = zniall + llanf (@n) — anWakn) + (Bun — BuWaka)|
< lzn = znall + anllll f (@n) = Waknll + Bullzn — Waka|l-



Simplifying it, we have

1 o,
o = Wil £ Tl = |+ 2 7o) = W] = 0
as (n — 00).
(b) Next we prove that||z,, — u,|| — 0,
[t = vl|> = Ty, 20 = T[> < (Trpn — Try v, 20 — v) = (Up — 0, 25 —

1
= 5lun = ol* + [lzn = 0]I* = [lun = zal|*),

and hence
lun = vlI* < 2w = 0l* = flun — 2all*.
By virtue of the convexity of norm ||.||? and (3.1.3), we have

Hanrl - UHQ = HO‘nf(mn) + Bnn + 1 Wakn — vH2
= [l f(@n) + Bun + Y Wokn — (an + B + )0

= Hanf(xn> + ﬁnxn + fYanxn — QpU — ﬁnv + 7nvl‘2

20

(3.1.14)

v)

(3.1.15)

< lawf(@n) = cnv]|* + [1Bazn = Buvl* + 1 Wakn = yvl”
< onllf(@n) = vlI* + Ballzn — vll* + 3l Wakn — vl

< ol f(zn) = ol* + Ballwn — vl + Yallkn — v]®

< onllf(@n) = vI* + Ballwn — vl* + ullyn — vl

Again by (3.1.3) and (3.1.15)

lyn = ol* < flun = ol* < flew = ol = un — 2.

(3.1.16)
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Substituting the above inequality into (3.1.16), we have
[2nr1 = 0l < anll (@) = 0l1* + Buallzn — 0l + Wdllzn — vlI* = llun — 2nl*}
(@) = 0lI* + Bullzn — vl + yallzn — vI* = yullun — 2412
= ol f(@n) — 0lI* + (B + o) l2n — vII* = Yl — 2012
(@) = ol* + (1 = an)llzn — 01> = Yullun — zall?,
and hence
Yalltn = zall* < anll f(@n) = vI* + [z = 0l = 2ps1 — 0]
< anl f(@n) = 0l + (2 — 2asa ) (120 = 0l + ll2nss — 0l]).-
By virtue of conditions (i)-(iii), c,, — 0 and
liminf 5, = hm 1nf(1 —a, — () =1—limsup g, > 0.

n—00 n—00

Therefore from (3.1.13)
|zn — un|| = 0 (n — o). (3.1.17)

(c) Next we prove that |u, — k|| — O.
In fact, since A is a-inverse-strongly monotone, by the assumptions imposed on {\, }
and (3.1.3) for given v € FNVI(C, A) N EP(¢) we have
1y = vl]* = [I(1 = AnA)un — (I = AnA)o]|?
= |lup — ApAu, — v + N\, Avl?
= [[(un — v) = An(Au, — Av)|?
= |lu, — v||* = 22\ (uy, — v, Au, — Av) + A2 || Au, — Avl|?
< |un — v||? = 2Xa|| A, — Av|| + N2 Au,, — Av||?
= |lu, — v||* + M(An — 20) || Au,, — Avl|?
< ||z — v[|* + a(b — 2a)||Au,, — Av|*.
Substituting it into (3.1.16) , we have
|zt — vlI* < anll f(z0) = vl|* + Ballzn — 01 + {llen —vl* +
a(b — 2a)||Au,, — Avl||*}

= annf(xn) - UHQ + (B + '771)”1771 - U||2 + a(b - 20‘)'771”"4“71 - AUH2



22

= an||f(zn) = vl + (1 = an)llzn = 0l* + a(b = 20)y | Au, — Av|,
1.e.,
a(20 = b)Yul| Aun — A < anll f(@n) = vI* + [z — 0[P = 201 — 0l
< | f () = vl + (lzn =0l + 201 = V) 2041 = 2nll.

Since a,, — 0,a,b € (0,2«a),liminf~, >0 and ||x,+1 — z,|| — 0, we obtain
|| Au,, — Av|| — 0(n — o0). (3.1.18)

Again from (2.2.1) and (3.1.3) , for any v € F N EP(¢) NVI(C,A)), we have
1y — vl = [ Pe(tn — AnAun) = Po(v = AnAv)||?
< ((up — MAuy,) — (v — X\ AV), yp, — V)
= %{Ilun = MAun) = (0 = X A) 12 + [y — 0l = [[(un — AnAun) —
(v = AnAv) = (g — )|}
= %{H(I = MaA)tn = (I = XA + [y = vII* = un — AnAu,
— 0+ M\ Av — y, + 02
< %{Hun =0l + llyn = vlI* = llun — g — An(Auy — Av)|?}
< %{Hun — 0l + 1y — 0I1* = llun — yull* + 220 (0 — Y, Aun —
Av) — N2 || Au,, — Avl?}.

This implies that

IN

[Yn — U||2 [|en — U||2 — Jlun — yn||2 + 22X (tn = Yn, Aup — Av) — )‘721||Aun - AUH2

IN

= 0lI* = llun = yall* + 220 {tn = Yo, Auy — Av)

— 22| Au, — Av|. (3.1.19)

Substituting (3.1.19)into (3.1.16), we have

lzns1 = vl* < anllf(zn) = vII* + Ballzn — vl + yn{llzn — 0l* = [Jun — ynll* +

20 (Uy, — Yn, Auy, — Av) — A2 || Au,, — Av|)?
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< anllf(@n) = vI* + 2 = vll = Ylltn = yoll* + 270 Antin = Y, Aun —
Av) — WAL Au, — Av|?,
which implies that
Yalltn = ynll* < cnll f(@n) = 0l + 0 — 01 = l2nr = 01> + 290 Anlun —
Yn|ll[ Aty — Avl].
By conditions (i)-(iii), o, — 0 and h,?i, g}f v, > 0. Hence it follows from

|Tnt1 — zn|| — 0 and ||Au,, — Av|| — 0 that ||u, — y,| — 0(n — o0).

Since HknynH - “PC(yn - AnAyn) - PC(un - /\nAun)H S ||yn - Un”,WC have

1B = tnll < (Ko = ynll + lym — unll < 2[|yn — unll — 0(n — 00),(3.1.20)

which together with (3.1.14) and(3.1.17) shows that

\Wikn — knl|| < [[Whkn — ol + |20 — wnl| + [|un — kn]| — 0(n — 00). (3.1.21)

(V) Next, we prove that limsup(f(z) — z,z, — z) <0,

n—oo

where z = Pravic,anepe)f (z). For this purpose, we choose a subsequence {k,, } C
{k,} such that
limsup(f(z) — z, Wyky, — 2) = Um (f(2) — 2, Wy, kn, — 2).

Since{k,,} is bounded in C, without loss of generality, we can assume that k,, —

k € C. Since |W,,k,, — ky,|| — 0, this implies that W, k,, — k. Therefore we have

limsup(f(z) — z, Wpk, — 2) = lm(f(z) — 2, Wy, kn, — 2)

n—oo 1— 00

= (f(z) =2,k —2). (3.1.22)

Next we prove that k € FNVI(C,A) N EP(¢p).
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(a) First, we prove k € VI(C, A).

Axr+ Nz, z€C;
Txr =

0, z¢C.

For any given(z,u) € G(T'). hence u — Az € Ngx. Since k, € C, by the

definition of N, we have

(x — kp,u— Ax) > 0. (3.1.23)

On the other hand, since k,, = Po(yn— A\ Ayn), we have (z—ky,, ky— (Yn— A Ayn)) >

0, and so
kn — Yn
An

(x — kny, + Ay,) > 0.

By (3.1.23) and the «-inverse monotonicity of A, we have
(x — kp, u) > (v — ky,, Az)

> <$ - knmAx> - <l’ - knm @ + Aynz>
Kn, — Yn, "
An; )

Since ||k, — yn|| — 0, k,, — k and A is Lipschitz continuous, we have

2 <37 - kniaAkni - Aynl> - <1‘ - knm

Zlg})lo(x — kn,,u) = (x — k,u) > 0.
Again, since 7" is maximal monotone, hence 0 € T'k. This shows that
ke VI(C,A) (see[T7]).

(b) Next we prove that k € F(W) = ﬁ F(S,)

n=1
Suppose the contrary, k ¢ F'(W), i.e., Wk # k. Since k,,, — k,
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by the Opial condition, we have

liminf ||k,, — k|| < liminf|k,, — WEk||

IN

lim int{ || kn, — Wha, || + | Wk, — W[}

= liminf{||k,, — Wk,

+ || kn, — K|} (3.1.24)

By (2.2.8) and (3.1.21)

IN

IN

lim {sup [|[Wa — W,,.x| }

1—00 J?EK

lim [|W,, ki, — kin,|| = O, (3.1.25)

+

therefore, we have

liminf ||k,, — k|| < lim inf||k,, — k||

This is a contradiction, which shows that k € F(W) = F = ﬂ F(S,).
n=1

(c) Now we prove that k € EP(9).

1
¢(un7y) + 7“_<y — Up, Up — xn> Z Oavy € C.

By condition (A2)

_<y — Up, Up — xn) 2 Cb(%un),

n

and hence

Up — T,
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on the other hand, from (3.1.20) we have
Hlun = Enll < {ltn = ynll + lyn = Enll < 2[lun — ynll — 0.
Since k,, — k, and so u,, — k. From (3.1.17) and (3.1.26) and condition (A4)
we have ¢(y,k) <0 VyeC.
For any ¢t € (0,1] and y € C, lety; = ty + (1 — t)k,then y, € C.
By condition (A4)
0= &(ye, yr) <tP(yr,y) + (1 — )d(yss k) < td(yr,y)-
Hence ¢(y:,y) > 0. By condition (A3), ¢(k,y) > 0,Vy € C,i.e.,k € EP(¢).
The conclusion k € FNVI(C,A)N EP(¢) is proved.
Since 2 = Ppavi(c,anep(s) f(2), it follows from(2.2.2), (3.1.14) and (3.1.22)that

limsup(f(z) — z,z, — 2) = limsup(f(z) — 2, (x,, — Wiky,) + (Wypk, — 2))

= lim (f(2) — 2, Wy, kn, — 2)
= (f(») =z, k—2)<0. (3.1.27)

(VI) Finally we prove x, — z(n — oo). In fact, from (3.1.27) and (3.1.3),
|Zny1 — Z||2 = (an(f(xn) — 2) + Bu(Tn — 2) + Y (Wikn — 2), Tpy1 — 2)
S an<f($n - f<z>7xn+1 - Z> + an<f(z) — 2, Tp+1 — Z> +

Oullen = zll[lzns1 = 2l + nllkn = 2ll[[ 201 = 2]

—_

< sané{llzn = 27 + 2n1 — 21"} + anlf(2) = 2, 2000 — 2) +

1
Pnlllen = 2I1° 4 llensr = 2[1%) + 5 llkn = 2I1* + ll2nsr = 2[%)

which implies that

lznsr — 2l < (1= (1 = Qam)lzn — 2[|* + 200 (f (2) — 2, Tns1 — 2).
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Taking a,, = ||z, — 2[|%, Y0 = (1 — ), by, = 20, (f(2) — 2, Zpy1 — 2) in

Lemma 2.4, by the assumptions of Theorem 3.1, we know that all condition in Lemma
2.4 are satisfied. It follows from Lemma 2.4 that x, — 2 = Pprvicanepe)f (2)
(n — 00). By (3.1.17) w,, — 2 = Pravic,aneps) f(2) also.

This completes the proof of Theorem 3.1.



CHAPTER 1V

Examples and Numerical Results

4.1 Example and Numerical Result

In this chapter, we give numerical example which support the main result.

Example 4.1.1 Let C' = [0, 1] and the other conditions as follow :

T 1 1 1 1
n:Tr n:—>)\n:—7 n— 5 _1Mn — a7
" "$4 1— 24r, R s ML R I
1 n—+1 In +1 T+ 2
n— A T 5 o ln= _—A:27 :—7Wn:‘
& 2 4n?+2n " 4n? + 2n . %, f(z) 4 SILE
Solution We will check that the above assumptions satisfy the conditions in the main
theorem.
xz
Lou, =T, 2, = ———.
“ T o

Check
Let ¢(z,y)102? — 14y? + 4zy.
(A1) ¢(z,z) =0,Vx € C
é(x, ) = 102% — 142% + 42°
=0
(A2) ¢(z,y) + ¢(y,2) < 0,Vz,y € C.
o(x,y) + oy, z) = (102% — 14y + day) + (10y* — 142 + 4xy)
= 102% — 14y? + 4y + 10y* — 142> + 4y
= —4a? — 4y* + 8ay
= —[(22)* + 2(22)(2y) + (29)%]
=—(2r+2y)* <0
(A3) limsup o¢(tz+ (1 —t)z,y) < o(z,y), Vr,y,z € C.
lim sup tgzﬁ_&(z)fz +(1—t)z,y) = lir? soup 10[(tz+ (1 —t)x)* — 14y +4(tz + (1 — t)z)y)

t—0

= limsup [10[t22% + 2(t2) (1 — )z + ((1 — t)z)?] —

14y? + 4tzy + day — 4ty
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= lir? sup [10[t?2% + 2tzx — 2t%zx + 2% — 2ta® + t*2%] —
14y? + 4tzy + day — 4ty
= lim S[}lp [10t%22 + 20tzx — 20t% 22 + 102 — 20t2® +
10?952] — 14y* + 4tzy + 4oy — 4ty
= lim S[}lp [102% — 14y* + 4ay]
= 10]:2 — 1492 + day = ¢(x,y).
(A4) y — ¢(x,y) is convex and weakly lower semi-continuous.

e weakly lower semi-continuous

Sz, ) < limint 6(z,y,)
hg}lg.}f o(x,yn) = liTILriiorolf[le2 — 1492 + day,] = 102* — 14y + dayo
o, lim inf () = 102% — 14y + dayo = ¢(x, yo)
e convex if for any z1, 25 € Candt € (0,1)
Fi(z,tey + (1 —t)yy) < tFi(z,xz1) + (1 —t)Fi(x, 1)
Fi(z,tzy + (1 — t)yy) = 102% — 14[txy + (1 — )y > + 4xfte; + (1 — t)y]
= 102% — 14[tz; + (y1 — ty1)]? + dx[tzy + (y1 — ty1)]
= 102? — 14[t%23 + 2tz (y1 — tyr) + (y1 — tyr)?] + dtox; +
dxy; — dtxy;
= 102% — 14[t?23 + 2tzy; — 2%01y1 + y? — 2% + 23] +
dtxxr, + 4oy,
= 102% — 14t%2% — 28txy; + 28t%w1y; — 14y} + 28tyd —
142y + dtxw, — Atwy, + 4oy, — dtwy, + 10tz? — 10t2?
= 10tx? — 14t22% + 4tzx, + 1022 — 14y? + 4xy; — 10tz* —
14t%y? — dtay, — 28txyy; + 28t%21y; + 28ty?
= t[102% — 14t2? + daxy] + (1 — t)102% — 14y? — 14293 +
(1 — t)dzy; — 28tz1yy + 28t2x 1) + 28ty?
< t[102% — 1423 + 4xz] + (1 — ¢)[102% — 14y? — dxy,]
— 28txyy; + 282wy + 28ty?

< t[102% — 1423 + 4dxzy] + (1 — ¢)[102% — 14y? — dxy]



=tF(x,x1) + (1 —t)Fi(z,y1).
Consider ¢(z,y) + %(y —z,z2—12) >0
¢(z,y)—|—%(y—z,z—x) = 1022 — 14y2+4zy+%(y—z,z—x>
= 1022 — 14y% + 42y + %(y —2)(z — )
= 1022 — 14y% + 42y + %(yz —xy — 2%+ x2)
= 10r2% — 14ry® + drzy +yz —ay — 22 + a2
= —14ry* + (drz + 2z — 2)y + (10rz? — 2% + 22).
Leta=—14r,b=4rz+z —x,c = 10rz? — 2% + x2.
Consider b* — 4ac = (4rz + z — 2)? — 4(—14r)(10r2* — 2% + x2)

= (drz+ 2)? = 2(4rz + 2)z + 22 + 561 (10rz2 — 22 + 22)

= 161222 4+ 8rz% + 22 — 8rzx — 2zx + 2 + 5601222 — 56122 +

o6rTZ

= (16r22% + 560r%2?) + (8rz? — 561r2?%) 4 (56rzz — 8rzz) +
22+ 2% — 222

= 576r22% — 48rz2 + 48rxz + 22 + 2 — 2zx

= (576r%2% — 48rz% + 22) + (48rxz — 222) + a?

= (576r% — 48r + 1)2% + (48r — 2)zz + 22

= (24%r% — 2(24)r + 1)22 + 2(24r — 1)z + 2°

= [(24r — 1)%]22 + 2(24r — 1)zz + 22

=[(24r — 1)z +z]* > 0.

b — dac = [(24r — 1)z + z]?

(1—=24r)z==x
x
z2=—"
(1 —24x)
‘/I/‘n

S U rnx 1—247"”
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2. Let A\, =

n+1
Check
1
li Ari— A =0 5 A\, =
* Jim P i
1 1
li At — A = 1 —
niibo |1 woo | (n+ 1) + 1 n+1’
. In+1—=(n+2)
= lim
n—oo| (n+2)(n+1)
li !
= lim
w5 |+ 2)(n + 1)
1
3. Let o), = —.
et o o™
Check
e lima,=0 |, Zan:oo
n=1
lim o, = lim —
n—oo n—oo 2N,
>
— = 0.
2n
n=1
4. Let 3, = —.
=1t 3
Check

o0 < liminf 5, <limsup 3, < 1

n—oo

1 1 1
0 < liminf —| <1 -l <1
o [Qn—l— it 2} =P [2n—|— 1t 2}
dn +1
S5Letr,=1— ————.
e 4n? + 2n
Check
eliminfr, > O;Z |Tni1 — Tn] < 00
n=1
L dn+1
hﬁ&lf[l—m}zbo
- 4n+1)+1 dn+1

>l

n+1

dn+1)2+2(n+1) * 4n? 4+ 2n



—4n—4+1 N dn +1
An+1)2+2)(n+1) 4n?2+2n
—4n —3 dn +1

5

n+1

4n+1)24+2(n+1) +4n2+2n

6. A is and a-inverse strengly monotone.
Check
By definition of a-inverse strongly monotone

A:C — H;(Az — Ay, x — y) > af Az — Ayl

Let Av =22 - Ay=2
(Az — Ay, x —y) = (20 — 2y, — y))

= (22— 2y)(z —y)
=2(z —y)(z —y)

=2(z —y)*

= L2 -y

- i(Q:c —9y)?

Ziwx—%W-
2

N
Hence A is a 5 tinverse strongly monotone.

7.f(zx) is contraction

Check
[f(z) = fWl <allz -yl ,a<1
Let f(z) = xzz.

Consider : || f(z) — f(y)|| = =2 — (X2)|
1
= llz+2-y-2]
— o=y
< Ia—yl
=5 Yil-

Hence f is a contraction.

32
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8.W,, is nonexpansive.
Check
Sz = Sy|| < [lz —yl|
Let W,, = sinnx
consider : [|Sx — Sy|| = ||sinnz — sinny||

< [lz =yl

After we run this algorithm by using MATLAB with the setting z; = 0.5

we can get the value of x,, as follows:

n T, n Ty

1 0.5000 11 0.0809

2 0.7292 12 | 0.0676

3 0.6810 13 0.0581

4 0.5495 14 0.0510

5 0.4155 15 0.0456

6 0.3059 16 | 0.0413

7 0.2245
8 0.1669
9 0.1272

10 0.0998 | 1001 | 0.0000

Table 1: The value of x,, generated by Example 4.1.1
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Figure 1: The convergence of =, by Example 4.1.1

We can see that x,, converges to 0 which is the fixed point of W,,.

1200



CHAPTER V
CONCLUSIONS

5.1 Conclusion

In this Chapter , we propose the conclusion of our study which consists of the

main theorem , and numerical examples as shown in the followings.

Theorem 5.1.1 ([17]) Let H be real Hilbert space , C be a noneempty closed convex
subset of H, ¢ : C' x C' — R be a bifunction satisfying the condition (Al) - (A4)
A C — H an « - inverse-strongly monotone mapping , {S; : C — C} be a
family of infinitely nonexpansive mappings with FNVI(C, A)NEP(¢) # () , where
F =2, F(S;) and f : H — H be a contraction mapping with a contractive
constant £ € (0, 1).

Let {z,},{yn},{k.} and {u,} be the sequence defined by

(

1
¢(un7y) + _<y — Up, Upn — xn> 2 07 vy € Ca

Tn

Tptl = Oénf(xn> + ﬁnxn + ’Yankn n Z 17

kn = Pc(yn - /\nAyn)a

Yn = Pc(u, — \Auy,),

\

where W,, : C' — (' is the sequence definde by (2.2.6) ,a,, , 3, and 7,
are sequences in [ 0, 1], A\, is a sequence in [a,b] C (0,2«) and {r,} is a sequence
in C (0,00). If the followwing conditions are satisfied :

@ o+ B+ 7 =1

(i) lim o, =0 D =00
n=1
(iii) 0 < liminf 8, <limsupf, <1 ;
(iv) limsupr, > 0 ;Z | Ty — T |[< 00
n—oo -1

V) limsup | Auyr — Ao |= 0

n—oo
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then {z,} and {u,} converge strongly to z € F N VI(C,A) N EP(¢), where

2 = Ppavie,anepe) f(2).

Example 5.1.1 Let C' = [0, 1] and the other conditions as follow :
T, 1 1 1 1

PP )\n:—a n:_7 n: _7
U T il 10‘ o P 2n—|—1—;2
n + n + T+
n= 5 ) nzl_—,A = 2z, = —
" 2 4An? 4+ 2n " 4n? + 2n o 7. f@) 4

Up = Trnxn ==

, W, =sinnz

0.8 . . . . .
07k
0.6
0.5

x= 0.4
0.3
0.2

0.1

0 200 400 G600 BOO 1000 1200
Number of iterations (n)

Figure 2: The convergence of z, by Example 5.1.1

We can see that z,, converges to 0 which is the fixed point of WW,,.
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