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ABSTRACT
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CHAPTER 1

Introduction

Among many algebraic structures, algebras of logic form important class
of algebras. Examples of these are BCK-algebras [6], BCl-algebras [7], BCH-
algebras [4], KU-algebras [13], SU-algebras [9], UP-algebras [5] and others. They
are strongly connected with logic. For example, BCI-algebras introduced by Iséki
[7] in 1966 have connections with BCI-logic being the BCI-system in combinatory
logic which has application in the language of functional programming. BCK and
BCl-algebras are two classes of logical algebras. They were introduced by Imai and
Iséki [0, [7] in 1966 and have been extensively investigated by many researchers.
It is known that the class of BCK-algebras is a proper subclass of the class of
BClI-algebras.

The notion of rough sets was first considered by Pawlak [12] in 1982. After
the introduction of the notion of rough sets, several authors were conducted on the
generalizations of the notion of rough sets and application to many many algebraic
structures such as: In 1994, Biswas and Nanda [I] introduced and discussed the
notion of rough groups and rough subgroups. Rough set theory is applied to
semigroups and groups by Kuroki [10], and Kuroki and Mordeson [11] in 1997.
In 2002, Jun [§] and Dudek et al. [2] applied rough set theory to BCK-algebras
and BCl-algebras. In 2016, Mao and Zhou [8] applied rough set theory to pseudo-
BCK-algebras.

In this paper, we apply the rough set theory to UP-algebras, introduce the
notion of upper and lower rough UP-subalgebras (resp., rough UP-filters, rough
UP-ideals and rough strongly UP-ideals) of UP-algebras, and discuss some of their

important properties and its generalizations.



CHAPTER 2
Basic Results on UP-Algebras

An algebra X = (X, -,0) of type (2,0) is called a UP-algebra [5], where X
is a nonempty set, - is a binary operation on X, and 0 is a fixed element of X (i.e.,

a nullary operation) if it satisfies the following axioms: for any z,y,2 € X,
(UP-1) (y-2)-((z-y)-(z-2)) =0,

(UP-2) 0-z ==z,

(UP-3) z-0=0, and

(UP-4) z-y=0and y -z =0 imply z = y.

From [5], we know that the notion of UP-algebras is a generalization of

KU-algebras.

Example 2.1. [5] Let X be a universal set. Define two binary operations - and
x on the power set of X by putting A-B = BN A" and Ax B = BUA for
all A,B € P(X). Then (P(X),-,0) and (P(X),*,X) are UP-algebras and we
shall call it the power UP-algebra of type 1 and the power UP-algebra of type 2,

respectively.
The following is an important property of UP-algebras.

Proposition 2.2. [5] In a UP-algebra X, the following properties hold: for any
r,y,z € X7

(1) z-xz =0,

(2) x-y=0andy-z=0 imply x-z=0,
(3) x-y=0 implies (z-x)-(z-y) =0,
(4) x -y =0 implies (y-z) - (v -2) =0,

(5) x-(y-z) =0,



(6) (y-x)-x=0if and only if x =y - x, and
(7) = (y-y) =0.
In what follows, let X denote a UP-algebra unless otherwise specified.

Definition 2.3. [5] A subset S of X is called a UP-subalgebra of X if the constant
0 of X isin S, and (S, -, 0) itself forms a UP-algebra.

Tampan [5] proved the useful criteria that a nonempty subset S of a UP-
algebra X = (X, -,0) is a UP-subalgebra of X if and only if S is closed under the

- multiplication on X.

Definition 2.4. [14] A subset F' of X is called a UP-filter of X if it satisfies the

following properties:
(1) the constant 0 of X is in F, and
(2) for any z,y € X,z -y € Fand z € F imply y € F.

Definition 2.5. [5] A subset B of X is called a UP-ideal of X if it satisfies the

following properties:
(1) the constant 0 of X is in B, and
(2) for any z,y,z € X,z-(y-2) € Band y € B imply - z € B.

Definition 2.6. [3] A subset C' of X is called a strongly UP-ideal of X if it satisfies

the following properties:

(1) the constant 0 of X is in C, and

(2) for any z,y,2 € X,(2-y) - (¢2-2) € Cand y € C imply z € C.
Theorem 2.7. [3] The following statements hold:

(1) every UP-filter of X is a UP-subalgebra,

(2) every UP-ideal of X is a UP-filter, and

(8) every strongly UP-ideal of X is a UP-ideal. Moreover, a UP-algebra X is the
only one strongly UP-ideal of itself.



CHAPTER 3
Rough UP-Algebras

Definition 3.1. Let X be a set and p an equivalence relation on X and let P(X)
denote the power set of X. If x € X, then the p-class of z is the set (z), defined

as follows:
(), ={y € X | (z,9) € p}.

Define the functions p_ and p; from P(X) to P(X) putting for every S € P(X),

p_(S) = {r e X | (x),C 5},
pi(S) = {z € X | (2),NnS #0}.

p—(9) is called the lower approzimation of S while p, (S) is called the upper approz-
imation of S. The set S is called definable if p_(S) = p4(S) and rough otherwise.

The pair (X, p) is called an approzimation space.

Proposition 3.2. Let A and B be nonempty subsets of a UP-algebra X. If p is an

equivalence relation on X, then the following statements hold:
(1) p-(A) € AC pi(A),
(2) A C B implies p_(A) C p_(B) and p;(A) € p1(B),
(3) p-(ANB) =p_(A) N p_(B),
(4) p-(AUB) 2 p_(A)Up_(B),
(5) p+(ANB) € pi(A) N ps(B),
(6) p+(AUB) = p,(A) U py(B),
(7) p-(A)) € (p-(A)),
(8) (p+(A)) C p+(4'), and

(9) p-(A—B) C p_(A) — p_(B).



Proof. (1) Let © € p_(A). Then (z), C A. By reflexivity, (z,z) € p so z € (x),.
Thus © € A, that is, p_(A) € A. Let y € A. By reflexivity, (y,y) € p so
y € (y), Thusy € (y),NA#0D. Soy € pi(A), that is, A C p;(A). Therefore,
p-(A) CAC pi(A).

(2) Assume that A C B. Let z € p_(A). Then (z), € A C B. Thus
x € p_(B), that is, p_(A) C p_(B). Let € p;(A). Then (z), N A # 0, so there
isye (z),NA. Thusy € (z), and y € A C B, that is, y € (z), N B # (). Thus
z € p+(B). Hence, py(A) C pi(B).

(3) By Proposition [3.2)[(2)} we get p_(AN B) C p_(A) and p_(AN B) C
p—(B). Hence, p_(ANB) C p_(A) N p_(B). On the other hand, let z € p_(A) N
p—(B). Then z € p_(A) and x € p_(B). Thus (), C A and (z), C B. So
(x), € AN B, that is, x € p_(AN B). Therefore, p_(A) N p_(B) C p_(AN B).
Hence, p_(A)Np_(B) = p_(AN B).

(4) By Proposition we get p_(A) C p_(AU B) and p_(B) C
p—(AU B). Hence, p_(A)Up_(B) C p_(AU B).

(5) By Proposition 3.2[(2)} we get p+ (AN B) C p(A) and p (AN B) C
p+(B). Hence, p (AN B) C p(A) N pi(B).

(6) Let © € p4(AUB). Then (x),N(AUB) # (. Thus ((x),NA)U((x),N
B) # 0, we have (z),NA # (0 or (x),N B # (. Hence, x € p;(A) or x € p(B).
Therefore, x € py(A) U p,(B), that is, p (AU B) C p;(A) Upy(B). On the other
hand, p4(A) C p+(AUB) and p4(B) C p+ (AU B) by Proposition [3.2][2)} Hence,
p+(A) U ps(B) C pr(AU B), that is, p+ (AU B) = p,(4) U py(B).

(7) Let € p_(A’). Then (z), C A and so (z), € A. Thus z ¢ p_(A),
that is, x € (p_(A))". Hence, p_(A") C (p_(A))".

(8) Let z € (p+(A)). Then = ¢ py(A) and so (), N A = (. Thus
r ¢ A, that is, x € A’. Therefore, (z), N A" # 0, that is, € p;(A’). Hence,

(p(A)) C py(A).



(9) Now,
o (A=B)=p (AN D)
= p-(A)np_(B) (3))
< p-(A) N (p-(B)) (@)
— o ()~ p(B).
Hence, p_(A— B) C p_(A) — p_(B). O

Remark 3.3. Let p be an equivalence relation on a set X. Then p_(X) = X =
p+(X).

Proof. By Proposition we have p_(X) € X C p,(X) and p4(X) C X.
Thus X = p;(X). We shall show that X C p_(X). Let x € X. Then (z), C X.
Thus z € p_(X), that is, X C p_(X). Hence, p_(X) = X = p:(X). O

Definition 3.4. Let p be a congruence relation on X. Then the set of all p-classes

is called the quotient set of X by p, and is denoted by X/p. That is,

X/p={(x),] x € X}.

Define a binary operation * on X/p by (z), * (y), = (x - y), for all z,y € X.
Then (X/p,*,(0),) is an algebra of type (2,0). Indeed, let (z1), = (z2), and
(y1)p = (y2),- Then (21, 22) € pand (y1,y2) € p, 50 (z1-Y1, Z2-y2) € p because pis a

congruence relation on X. Hence, (z1),%(v1), = (x1-y1), = (2-y2), = (22),%(y2) -

Definition 3.5. For nonempty subsets A and B of a UP-algebra X = (X, -,0), we
denote

A-B={a-b|a€ Aandbec B}.

Lemma 3.6. If p is a congruence relation on X, then (x), - (y), C (x - y), for all
r,y € X.

Proof. Let z,y € X and t € (z),-(y),.- Thent = a-bforsome a € (), and b € (y),.
Thus (a,z) € p and (b,y) € p. So (a-b,x-y) € p, thatis, t =a-b € (z-y),.
Therefore, (z), - (v), C (z-y),. O



Example 3.7. Let X = {0,1,2,3} be a set with a binary operation - defined by the

following Cayley table:

10 1 2 3
0/0 1 2 3
110 0 2 3
2/0 1 0 3
3101 2 0

Then (X, -,0) is a UP-algebra. We see that

p=1{(0,0),(1,1),(2,2),(3,3),(0,1),(1,0)}

is a congruence relation on X. Thus

(0), ={0,1}, (1), = {0,1}, (2), = {2}, and (3), = {3}.

Since (2-2), = (0), = {01} and (2),- (2), = {2} - {2} = {0}, we have (2), (2), =
{0} 2 {01} = (2-2),.

Proposition 3.8. Let A and B be nonempty subsets of X. If p is a congruence
relation on X, then p;(A) - p+(B) C py(A- B).

Proof. Let t € p,(A) - py(B). Then t =z -y for some z € py(A) and y € p,(B).
Thus (), VA # 0 and (y), N B # 0, that is, a € (z), N A and b € (y), N B for
some a,b € X. By Lemma[3.6) we have a-b € (z),-(y), € (z-y), and a-b € A- B,
soa-be(z-y),N(A-B)#0. Thus (t),N(A-B) = (z-y),N(A-B) # 0, that is,
t€ py(A-B). Hence, py(A) - p-(B) C pi(A- B). a

Example 3.9. From Example[3.7) let A = {3} and B = {2,3}. Then A-B = {0, 2},
po(A) = (3} and po(B) = (2,3}, Thus py(4) - p.(B) = (0,2} 3 {0.1,2} =
p+(A- B).



CHAPTER 4
Main Results

In this chapter, we will research and analysis upper and lower rough
UP-subalgebras (resp., rough UP-filters, rough UP-ideals and rough strongly UP-
ideals) of UP-algebras, and discuss some of their important properties and its

generalizations.

Definition 4.1. Let S be a nonempty subset of X and p an equivalence relation on

X. Then S is called
(1) an upper rough UP-subalgebra of X if py(S) is a UP-subalgebra of X,
(2) an upper rough UP-filter of X if p,(9) is a UP-filter of X,
(3) an upper rough UP-ideal of X if p,(S) is a UP-ideal of X,
(4) an upper rough strongly UP-ideal of X if p,(S) is a strongly UP-ideal of X,

(5) a lower rough UP-subalgebra of X if p_(S) is a UP-subalgebra of X when
p—(S) is nonempty,

(6) a lower rough UP-filter of X if p_(S) is a UP-filter of X when p_(95) is

nonempty,

(7) a lower rough UP-ideal of X if p_(S) is a UP-ideal of X when p_(95) is

nonempty,

(8) a lower rough strongly UP-ideal of X if p_(S) is a strongly UP-ideal of X
when p_(.S) is nonempty,

(9) a rough UP-subalgebra of X if it is both an upper and a lower rough UP-
subalgebra of X,

(10) a rough UP-filter of X if it is both an upper and a lower rough UP-filter of
X,



(11) a rough UP-ideal of X if it is both an upper and a lower rough UP-ideal of
X, and

(12) a rough strongly UP-ideal of X if it is both an upper and a lower rough
strongly UP-ideal of X.

Example 4.2. Let X = {0,1,2,3,4} be a set with a binary operation - defined by

the following Cayley table:

012 3 4
0j0 1 2 3 4
110 0 2 3 2
2/0 1 0 31
3101 2 0 4
410 0 0 30

Then (X, -,0) is a UP-algebra. We see that

p=1{(0,0),(1,1),(2,2),(3,3),(4,4),(0,2),(2,0), (1,4), (4, 1)}

is a congruence relation on X. Thus

0),=(2), = 10,2}, (3), = {3}, and (1), =4),= {1,4}.
We have

(1) S := {0,3} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X but
p—(S) = {3} is not a UP-ideal (resp., UP-filter and UP-subalgebra) of X.
Thus S is not a lower rough UP-ideal (resp., lower rough UP-filter and lower

rough UP-subalgebra) of X. Hence, S is not a rough UP-ideal (resp., rough
UP-filter and rough UP-subalgebra) of X.

(2) S := {0,2,4} is not a UP-subalgebra (resp., UP-filter and UP-ideal) of X
but p_(S) = {0,2} is a UP-subalgebra (resp., UP-filter and UP-ideal) and
p+(S)=1{0,1,2,4} is a UP-subalgebra (resp., UP-filter and UP-ideal) of X.
Thus S is both a lower and an upper rough UP-subalgebra (resp., rough UP-
filter and rough UP-ideal) of X. Hence, S is a rough UP-subalgebra (resp.,
rough UP-filter and rough UP-ideal) of X.
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(3) S :={0,1} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X. Then
p—(S) = 0 and p,(S) = {0,1,2,4}. Thus S is both a lower and an up-
per rough UP-ideal (resp., rough UP-filter and rough UP-subalgebra) of
X. Hence, S is a rough UP-ideal (resp., rough UP-filter and rough UP-
subalgebra) of X.

(4) If p = X x X, then (0), = (1), = (2), = (3), = X. Thus S := {1,3} is
not a UP-ideal (resp., UP-filter and UP-subalgebra) of X, and p_(S) = 0
and py(S) = X, that is, S is both a lower and an upper rough UP-ideal
of X. Hence, S is a rough UP-ideal (resp., rough UP-filter and rough UP-
subalgebra) of X.

Theorem 4.3. Let p be a congruence relation on X. If C is a strongly UP-ideal of
X, then C' is a rough strongly UP-ideal of X .

Proof. Assume that C is a strongly UP-ideal of X. By Theorem , we have

C = X. By Remark 3.3} we have p_(C) = X = p,(C). By Theorem again,
we have p_(C) and p,(C) are strongly UP-ideals of X. Therefore, C' is a rough
strongly UP-ideal of X. m

Example 4.4. From Example [4.2][(4)] we have C':= {0,1, 2} is not a strongly UP-
ideal of X. Since p_(C) = 0 and p,(C) = X, we have C is both a lower and an
upper rough strongly UP-ideal of X. Hence, C'is a rough strongly UP-ideal of X.

Theorem 4.5. Every rough strongly UP-ideal of X is a rough UP-ideal.

Proof. Let S be arough strongly UP-ideal of X. Then p_(S) (if p_(S) is nonempty)
and p4(S) are strongly UP-ideals of X. By Theorem 2.7[(3)} p—(S) (if p_(S) is
nonempty) and p(S) are UP-ideals of X. Hence, S is a rough UP-ideal of X. [

Example 4.6. Let X = {0,1,2,3,4,5} be a set with a binary operation - defined
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by the following Cayley table:

O W O W w w | w
G e S O O RSO IS
o ot ot ot ot ot | o

o O o o o o | o
o O = =
O N DO N NN

Ol = W N = O

Then (X, -,0) is a UP-algebra. We see that

p=1{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(0,2),(2,0), (1, 4), (4, 1)}

is a congruence relation on X. Thus

(0)p = (2)p = {0,2}, (1), = (4), = {1, 4}, (3), = {3}, and (5), = {5}
If S ={0,2,4}, then p_(S) = {0,2} and p,(S) = {0,1,2,4}. Thus p_(S5) and
p+(S) are UP-ideals of X. Hence, S is a rough UP-ideal of X. Since p_(S5) # X
and p4(S) # X, it follows from Theorem that p_(95) and p4(S) are not
a strongly UP-ideal of X. Hence, S is a rough UP-ideal of X but is not a rough
strongly UP-ideal.

Theorem 4.7. Fvery rough UP-ideal of X is a rough UP-filter.

Proof. Let S be a rough UP-ideal of X. Then p_(S) (if p_(S) is nonempty)
and pi(S) are UP-ideals of X. By Theorem [2.7][(2)] we have p_(S) (if p_(9) is
nonempty) and p(S) are UP-filters of X. Hence, S is a rough UP-filter of X. [

Example 4.8. Let X = {0,1, 2,3} be a set with a binary operation - defined by the
following Cayley table:

0123
0/]0 1 2 3
110 0 2 2
2{0 1 0 2
3101 0 0

Then (X, -,0) is a UP-algebra. We see that
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p= {(070)7 (17 1)7 (2’ 2)7 (373)}

is a congruence relation on X. Thus

(0), = {0}, (1), = {1}, (2), = {2}, and (3), = {3}.

If S =1{0,1}, then p_(S5) ={0,1} = p;(S). Thus p_(S) and p(S) are UP-filters
of X but are not a UP-ideal. Hence, S is a rough UP-filter of X but is not a rough
UP-ideal.

Theorem 4.9. Fvery rough UP-filter of X is a rough UP-subalgebra.

Proof. Let S be a rough UP-filter of X. Then p_(S) (if p_(S) is nonempty)
and p4(S) are UP-filters of X. By Theorem 2.7][(1), we have p_(S) (if p_(S) is
nonempty) and p, (S) are UP-subalgebras of X. Hence, S is a rough UP-subalgebra
of X. O

Example 4.10. From Example if S =1{0,1,2,5}, then p_(S) = {0,2,5} and
p+(S) =40,1,2,4,5}. Thus p_(S) and p,(5) are UP-subalgebras of X but are not
a UP-filter. Hence, S is a rough UP-subalgebra of X but is not a rough UP-filter.

By Theorem [4.5] and [4.9] and Example [£.6] [4.8 and [£.10], we have that
the notion of rough UP-subalgebras is a generalization of rough UP-filters, the

notion of rough UP-filters is a generalization of rough UP-ideals, and the notion
of rough UP-ideals is a generalization of rough strongly UP-ideals. By Example
, the notions of UP-subalgebras (resp., UP-filters and UP-ideals) and rough
UP-subalgebras (resp., rough UP-filters and rough UP-ideals) are not identical.

Hence, we have the following relation:
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UP-subalgebra Rough UP-subalgebra

UP-filter Rough UP-filter

UP-ideal Rough UP-ideal

Strongly UP-ideal Rough strongly UP-ideal

Figure 1: Relation 1

Lemma 4.11. Let p be a congruence relation on X. If S is a UP-filter of X such
that (0), C S, then (s), C S for all s € S.

Proof. Assume that (s), € S for some s € S. Then there is z € (s), but « ¢ S, so
(x,s) € p. Since p is a congruence relation on X, we have (s-z,0) = (s-z,s-5) € p.
that is, s -z € (s-z), = (0), € S. Since S is a UP-filter of X, we have x € S

which is a contradiction. Hence (s), C S for all s € S. O

Definition 4.12. Let B be a UP-ideal of X. Define the binary relation ~5 on X

as follows: for all z,y € X,
x~pgyifandonlyif x-y € Band y-z € B. (4.1)

~p_(S) is called the lower approzimation of S by B while ~p, (S) is called the
upper approzimation of S by B. The set S is called definable with respect to B if
~p_(S) = ~p,(S) and rough with respect to B otherwise.

lampan [5] proved that ~p is a congruence relation on X.
Lemma 4.13. If B and C' are UP-ideals of X such that B C C, then ~gCr~q¢.

Proof. Let (z,y) €~p. Then z-y,y-x € B C C. Thus (z,y) €~c. Hence

~pCrc. [
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Proposition 4.14. Every nonempty subset of X is definable with respect to {0}.

Proof. Let S be a nonempty subset of X. If a € (z) then (a,z) € {0}. Thus

= {z} for all x € X.

~{oy?

a-x=0=ux-a By (UP-4), we have a = z. Thus ().,

Now,

~0y_(9) = {z € X | (2)~y, €5}

~{o}
—{reX|{s}C8)
={reX|zeS}

=9
and

~oy, (9) ={x € X | (2)~,, NS 7 0}
={zeX|{z}nS#0}
={zxeX|zeS}
=S

Hence, ~0_(5) = S = ~y (5), that is, S is definable with respect to

{o1. O
Theorem 4.15. [5] Let B be a UP-ideal of X. Then the following statements hold:

(1) the ~g-class (0)~, is a UP-ideal and a UP-subalgebra of X which B = (0)

B ~BJ

(2) a ~p-class (z)~, is a UP-ideal of X if and only if v € B,

(3) a ~p-class (x)~, is a UP-subalgebra of X if and only if x € B, and

B

(4) (X/ ~p,*,(0)~y) is a UP-algebra under the x multiplication defined by (x)~ ,*
(Y)py = (2Y)~y forallz,y € X, called the quotient UP-algebra of X induced

by the congruence relation ~pg.

Remark 4.16. If B is a UP-ideal of X, then ~5_(B) = B = ~p,(B). that is, B
is definable with respect to itself.
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Proof. Assume that B is a UP-ideal of X. Let x € B. Then -0 =0 € B and
0-z =z € B, that is, (z,0) €~p it follows from Theorem that B = (0)., =
(2)~p, S0 & € ~p_(B). Hence, B C ~p_(B) C ~p,(B). By Proposition [3.2][(1)]
we have ~p_(B) C B so ~p_(B) = B. Finally, we shall show that ~g, (B) C B.
Let # € ~p_(B). Then (x)., N B # (), so there is a, € (x)., and a, € B = (0),.
Thus (2)~, = (az)~py = (0)oy, = B, so x € B. Thus ~p,(B) C B. Hence,
B = ~p.(B). O

)
(

Remark 4.17. Let S be a nonempty subset of X contained in a UP-ideal B of X.
Then ~p,(S) = B and ~5_(S) = 0.

Proof. Let x € ~p,(S). Then (x).,NS # 0. Since S C B, we have (z).,NB # 0.
By Remark [£.16] we have z € ~p,(B) = B. Thus ~p,(S) C B. Next, we shall
show that B C ~p. (5). Let z € B. By Theorem [4.15][(1)} we have z € B = (0).,,.
Then (z)~, = (0)~, = B, so (z).,NB # 0. Thus z € ~p, (5). Hence, ~5,(5) =
B. Finally, we shall show that ~p_(S) = 0. Let ~p_(S) # 0. Then there are
z € ~p_(S). Thus (z)., C S C B. By Theorem [1.15|[(1)] we have z € B = (0).,,.
Then (z)~, = (0)

~p = B which is a contradiction. Hence, ~p_(S) = (). O

By Remark [4.17, we can see that S is a rough UP-ideal (resp., rough

UP-filter and rough UP-subalgebra) of X with respect to B.

Example 4.18. Let X = {0,1,2,3,4,5,6,7} be a set with a binary operation -

defined by the following Cayley table:

01234567
0/j01 2 3 45 6 7
110 0 2 3 2 3 6 7
2/01 031537
3101 204127
410 0 0 3 0 3 3 7
5/0 02020 27
6/0 1 001107
7/0 000 0OO0O0O
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Then (X, -,0) is a UP-algebra. Let B = {0,2}. Then B is a UP-ideal of X, so ~p is
a congruence relation on X. Thus (0)., = (2)~, = {0,2}, (1)~ = (4)~, = {1,4},
(3)ep = (6)ny = {3,6}, (5)~, = {5}, and (7)., = {7}. Let S ={0,1,2,3,4,5}.
Then S is a UP-subalgebra of X but ~5_(S) = {0,1,2,4,5} is not a UP-subalgebra
of X. Thus S is not a lower rough UP-subalgebra of X. Hence, S is not a rough

UP-subalgebra of X.

Theorem 4.19. Let S be a UP-subalgebra of X containing a UP-ideal B of X.
Then ~p_ (S) is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra
of X with respect to B.

Proof. By Proposition[3.2[(1)] we have S C ~p, (S) # 0. Let 2,y € ~p,(S). Then
()~ NS # 0 and (y)~, NS # 0. Thus there exist a,, a, € S such that a, € (z)-,
and a, € (y)~,. By Lemma [3.6] we have a, - a, € (), - (¥)~p € (¥ y)~p. Since
S is a UP-subalgebra of X, we have a, - a, € S. Thus a, - a, € (z-y)~, NS # 0.
Hence, = -y € ~p,(95), that is, ~p, (S) is a UP-subalgebra of X. O

Example 4.20. From Example 4.18 we have S = {0,2,4} is not a UP-subalgebra
of X but ~p5,(5) = {0,1,2,4} is a UP-subalgebra of X, that is, S is an upper

rough UP-subalgebra of X with respect to B.

Theorem 4.21. Let S be a UP-filter of X containing a UP-ideal B of X. Then
(1) ~p_(S) is a UP-filter of X,
(2) ~p,.(S) is a UP-filter of X.

Moreover, S is a rough UP-filter of X with respect to B.

Proof. (1) Let © € (0)~,. Then (z,0) €~p, that is, z = 0-2 € B C S. Thus
(0)~py € S. Hence 0 € ~5_(S). Next, let -y € ~p_(5) and z € ~5_(S). Then
(-y)wy € S and (z)~, € S. Thus z € S. We shall show that y € ~5_(5), that
is, (y)~y € S. Let a, € (y)~p. Since x € (7)., it follows from Lemma (3.6 that
T 0y € (2)my - (Y)p C(x-y)oy € S. Thus x-a, € S. Since S is a UP-filter of
X, we have a, € S. Thus (y)., C S, that is, y € ~p_(5). Hence, ~5_(95) is a
UP-filter of X.



17

(2) Since 0 € (0)~, and 0 € S, we have 0 € (0)., NS # 0. Hence,
0€ ~p(S). Next,let x-y € ~p, (S) and € ~5,(S). Then (z-y)., NS # 0
and ()., NS # 0. We shall show that y € ~p,(S5), that is, (y)., NS # 0.
Let w,v € S be such that v € (z - y)., and v € ()~,. Thus (u,z - y) €~p and
(v,z) €E~g,sou-(r-y) € BC Sandv-2 € B CS. Since u,v € S and S is
a UP-filter of X, we have x -y € S and z € S and so y € S. Since y € (Y)~yp,
we have y € (y)~, NS # 0. Thus y € ~p,(S5). Hence, ~p,(5) is a UP-filter of
X. [

Example 4.22. From Example [1.18] let S = {0,2,3}. Then S is not a UP-filter of
X, But ~5_(S5) = {0,2} and ~p,(S) = {0,2,3,6} are UP-filter of X, that is, S
is both a lower and an upper rough UP-filter of X with respect to B. Hence, S is
a rough UP-filter of X with respect to B.

Theorem 4.23. Let S be a UP-ideal of X containing a UP-ideal B of X. Then
(1) ~p_(S) is a UP-ideal of X,
(2) ~p.(S) is a UP-ideal of X.

Moreover, S is a rough UP-ideal of X with respect to B.

Proof. (1) Let © € (0)~,. Then (x,0) €~p, that is, z = 0-2 € B C S. Thus
(0)uy € S. Hence, 0 € ~5_(S). Next, let - (y-2) € ~p_(S) and y € ~p_(5).
Then (- (y-2))~py € S and (y)oy € S. Thus y € S. We shall show that
x-z € n~p_(9), thatis, (x-2)., €. Sincez-(y-2) € (z-(y-2))~p €S and S is
a UP-ideal of X, we have z -z € S. By Lemma [4.11] we have (z-z)., C S. Thus
x-z € ~p_(5). Hence, ~5_(S) is a UP-ideal of X.

(2) Since 0 € (0)~, and 0 € S, we have 0 € (0)~, NS # 0. Hence,

~B ~B

0 € ~p (5). Next, let - (y-2) € ~p,(S) and y € ~p,(S). Then (z - (y -
2))py NS # 0 and (y)o, NS # 0. We shall show that z - z € ~p,(S), that is,
(- 2)y NS # 0. Since (- (y-2)uy NS # 0 and (y)oy, NS # O so we have
s1, 82 € S such that s; € (- (y- 2))~p and sy € (y)~py. Thus (s1, 2 (y-2)) E~p

and (s2,y) €E~p. 80 (x-(sg-2),x-(y-2)) E~p. By transitive, (si,z- (s2-2)) E~p.
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Thus (s1)~, = (- (S2-2))~p. Since S is a UP-ideal of X, it follows from Theorem
that S is a UP-filter of X. By Lemma [4.11] we have (s1)~, € S. Thus
(x-(s2-2))~y € S. Since x-(s2-2) € (x-(S2-2))~y €S and S is a UP-ideal of X,
we have z-z € S. Thus -z € (x-2)., NS # 0, that is, - z € ~5,(S). Hence,
~p4(S) is a UP-ideal of X. O

Example 4.24. From Example [1.18] let S = {0,2,6}. Then S is not a UP-ideal of
X, But ~5_(S) ={0,2} and ~5,(S) = {0,2,3,6} are UP-ideal of X, that is, S
is both a lower and an upper rough UP-ideal of X with respect to B. Hence, S is
a rough UP-ideal of X with respect to B.

Theorem 4.25. Let S be a subset of X containing a UP-ideal B of X. Then S is a
strongly UP-ideal of X with respect to B if and only if S is a lower rough strongly
UP-ideal of X.

Proof. Let © € (0)~,. Then (z,0) €~p, that is, x = 0-2 € B C S. Thus
(0)~, € S. Hence, 0 € ~p5_(S). Next, let (z-y)-(z-x) € ~p_(S)and y € ~5_(95).
Then ((z-y) - (z- ), € S and (y)~, € S. Thus y € S. We shall show that

~B ~B

x € ~p_(S5), that is, (x)., C S. Let a € (z)~,. Since y € (y)~, and z € (2)

~B

we have

(- 9) (2 @) € (Do - W] - [y - (@)
C (2 )y (- 2), (By Lemma
C((z-y)- (z-2))ms (By Lemma 59)
C S.

Thus (z-y)-(z-a) € S. Since S is a strongly UP-ideal of X, we have a € S. Thus
(x)~y € S. that is, z € ~5_(S). Hence, ~5_(S5) is a strongly UP-ideal of X. On
the other hand, let S be a lower rough strongly UP-ideal of X. Then ~g_(S) is a
strongly UP-ideal of X. Thus X = ~5_(S) € S C X. Hence, S = X, it follows
from Theorem that S is a strongly UP-ideal of X. [

Theorem 4.26. Let S be a strongly UP-ideal of X containing a UP-ideal B of X.
Then ~p, (S) is a strongly UP-ideal of X, that is, S is an upper rough strongly
UP-ideal of X with respect to B.
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Proof. Since 0 € (0)., and 0 € S, we have 0 € (0).,NS # 0. Hence, 0 € ~p5_(95).
Next, let (z-y)-(z-2) € ~p(S) and y € ~p,(S). Then ((z-y) - (z-2))z NS #0
and (y)~, NS # 0. We shall show that z € ~p,(5), that is, (z)., NS # 0.
Since ((z-y) - (z-2))y NS # 0 and (y)~, NS # () so we have s1,s5 € S such
that s7 € ((z-y) - (2- 7))~y and sy € (y)~y. Thus (s1,(2-y) - (2-2)) €~p and
(s2,y) €~p. Then ((z-s2)-(2-2),(2-y)-(z-2)) €~p. By transitive, we have
(s1,(z+s2) - (2-2)) €~p. Thus (s1)~, = ((z-52) - (2-2))~,. Since S is a strongly
UP-ideal of X, we have S is a UP-filter of X. By Lemmal[4.11] we have (s1)., C S.
Thus ((z-s9) - (2-2))~y € S. Since (2-52) - (z-2) € ((2-52) - (2-2))ny €S and
S is a strongly UP-ideal of X, we have z € S. Thus z € (z)~, NS # (). Hence,
x € ~p,(5). Therefore, ~5,(5) is a strongly UP-ideal of X. O

Example 4.27. From Example [4.18] we have S = {0,1,2,3,5,7} is not a strongly
UP-ideal of X but ~p, (S) = {0,1,2,3,4,5,6,7} = X, it follows from Theorem [2.7]
that ~p,(S) is a strongly UP-ideal of X, that is, S is an upper rough strongly
UP-ideal of X with respect to B.

By Theorem 4.19, 4.21, 4.23 and 4.25 and Example 4.20, 4.22, and 4.24,
we have that the notion of upper rough UP-subalgebras is a generalization of
UP-subalgebras and rough UP-subalgebras, rough UP-filters is a generalization of
UP-filters, rough UP-ideals is a generalization of UP-ideals, and rough strongly

UP-ideals and strongly UP-ideals coincide. Hence, we have the following relation:

ﬁ Upper rough UP-subalgebra ﬁ

UP-subalgebra Rough UP-subalgebra
UP-ther Rough lTJP-ﬁlter
UP-Tdeal Rough ITJP-ideal

StronglyTUP-ideal Rough stronTgly UP-ideal

Figure 1: Relation 2



CHAPTER 5

Conclusions

From the study, we get the main results as the following:

1. Let A and B be nonempty subsets of a UP-algebra X. If p is an equivalence

relation on X, then the following statements hold:

(1) p_(A) C AC py(A),

(2) A C B implies p_(A) C p_(B) and p,(A) C py(B),
(3) p-(ANB) = p_(A)Np-(B),

(4) p-(AUB) 2 p_(A)Up-(B),

(5) p+(ANB) C pi(A) N pi(B),

(6) p+(AUB) = p4(A)Up4(B),

(7) p-(A) € (p-(A)),

(8) (p+(A)) C pi(A'), and

(9) p-(A—B) S p-_(A) — p-(B).

2. If p is a congruence relation on X, then (z),- (y), C (z-y), for all z,y € X.

3. Let A and B be nonempty subsets of X. If p is a congruence relation on X,

then pi(A) - p(B) € p+(A- B).

4. Let p be a congruence relation on X. If C'is a strongly UP-ideal of X, then
C is a rough strongly UP-ideal of X.

5. Every rough strongly UP-ideal of X is a rough UP-ideal.
6. Every rough UP-ideal of X is a rough UP-filter.
7. Every rough UP-filter of X is a rough UP-subalgebra.

8. Let p be a congruence relation on X. If S is a UP-filter of X such that
(0), € S, then (s), C Sforall s € S.
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If B and C' are UP-ideals of X such that B C C, then ~gCr~g¢.
Every nonempty subset of X is definable with respect to {0}.

Let S be a UP-subalgebra of X containing a UP-ideal B of X. Then ~p_(5)
is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra of X
with respect to B.

Let S be a UP-filter of X containing a UP-ideal B of X. Then

(1) ~p_(5) is a UP-filter of X,

(2) ~p.(S) is a UP-filter of X.
Moreover, S is a rough UP-filter of X with respect to B.
Let S be a UP-ideal of X containing a UP-ideal B of X. Then

(1) ~5_(S) is a UP-ideal of X,

(2) ~p.(S) is a UP-ideal of X.
Moreover, S is a rough UP-ideal of X with respect to B.

Let S be a subset of X containing a UP-ideal B of X. Then S is a strongly
UP-ideal of X with respect to B if and only if S is a lower rough strongly
UP-ideal of X.

Let S be a strongly UP-ideal of X containing a UP-ideal B of X. Then
~p.(9) is a strongly UP-ideal of X, that is, S is an upper rough strongly
UP-ideal of X with respect to B.
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Abstract

In this paper, rough set theory is applied to UP-algebras, proved some results and
discussed the generalization of some notions of rough UP-subalgebras, rough UP-filters,
rough UP-ideals and rough strongly UP-ideals. Furthermore, we discuss the relation
between rough UP-subalgebras (resp., rough UP-filters, rough UP-ideals and rough
strongly UP-ideals) and UP-subalgebras (resp., UP-filters, UP-ideals and strongly UP-
ideals) and present some examples.

Mathematics Subject Classification: 03G25
Keywords: UP-algebra, rough UP-subalgebra, rough UP-filter, rough UP-ideal, rough
strongly UP-ideal

1 Introduction

Among many algebraic structures, algebras of logic form important class of algebras. Ex-
amples of these are BCK-algebras [6], BCI-algebras [7], BCH-algebras [4], KU-algebras [13],
SU-algebras [9], UP-algebras [5] and others. They are strongly connected with logic. For
example, BCI-algebras introduced by Iséki [7] in 1966 have connections with BCI-logic be-
ing the BCI-system in combinatory logic which has application in the language of functional
programming. BCK and BCl-algebras are two classes of logical algebras. They were in-
troduced by Imai and Iséki [6, 7] in 1966 and have been extensively investigated by many
researchers. It is known that the class of BCK-algebras is a proper subclass of the class of
BClI-algebras.

The notion of rough sets was first considered by Pawlak [12] in 1982. After the introduc-
tion of the notion of rough sets, several authors were conducted on the generalizations of the
notion of rough sets and application to many many algebraic structures such as: In 1994,

*This work was financially supported by the University of Phayao.
fCorresponding author.
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Biswas and Nanda [1] introduced and discussed the notion of rough groups and rough sub-
groups. Rough set theory is applied to semigroups and groups by Kuroki [10], and Kuroki
and Mordeson [11] in 1997. In 2002, Jun [8] and Dudek et al. [2] applied rough set theory
to BCK-algebras and BClI-algebras. In 2016, Mao and Zhou [8] applied rough set theory to
pseudo-BCK-algebras.

In this paper, we apply the rough set theory to UP-algebras, introduce the notion of
upper and lower rough UP-subalgebras (resp., rough UP-filters, rough UP-ideals and rough
strongly UP-ideals) of UP-algebras, and discuss some of their important properties and its
generalizations.

2 Basic Results on UP-Algebras

An algebra X = (X, -,0) of type (2,0) is called a UP-algebra [5] where X is a nonempty set,
- is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it
satisfies the following axioms: for any z,y,z € X,

(UP-1) (y-2)-((z-y)-(z-2) =0,
(UP-2) 0-z ==,
(UP-3) z-0=0, and
(UP-4) z-y=0and y -z =0 imply = = y.
From [5], we know that the notion of UP-algebras is a generalization of KU-algebras.

Example 2.1. [5] Let X be a universal set. Define two binary operations - and * on the
power set of X by putting A-B=BNA" and Ax B=BUA’ for all A,B € P(X). Then
(P(X),-,0) and (P(X),*, X) are UP-algebras and we shall call it the power UP-algebra of
type 1 and the power UP-algebra of type 2, respectively.

The following is an important property of UP-algebras.
Proposition 2.2. [5] In a UP-algebra X, the following properties hold: for any x,y,z € X,
(1) x-x =0,
(2) z-y=0andy-z=0 implyx-z=0,
(3) -y =0 implies (z-x)-(z-y) =0,
(4) -y =0 implies (y - z) - (x-z) =0,
(5) - (y-x)=0,
(6) (y-x)-x=01if and only if x =y - x, and
(7) = (y-y) =0.
In what follows, let X denote a UP-algebra unless otherwise specified.

Definition 2.3. [5] A subset S of X is called a UP-subalgebra of X if the constant 0 of X
is in .S, and (5, -, 0) itself forms a UP-algebra.

Tampan [5] proved the useful criteria that a nonempty subset S of a UP-algebra X =
(X,+,0) is a UP-subalgebra of X if and only if S is closed under the - multiplication on X.
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Definition 2.4. [14] A subset F of X is called a UP-filter of X if it satisfies the following
properties:

(1) the constant 0 of X is in F', and
(2) for any z,y € X,z-y € Fand z € F imply y € F.

Definition 2.5. [5] A subset B of X is called a UP-ideal of X if it satisfies the following
properties:

(1) the constant 0 of X is in B, and
(2) for any z,y,z € X,z - (y-2) € Band y € B imply « -z € B.

Definition 2.6. [3] A subset C' of X is called a strongly UP-ideal of X if it satisfies the
following properties:

(1) the constant 0 of X is in C, and

(2) for any x,y,2€ X,(z-y)-(z-z) € C and y € C imply z € C.
Theorem 2.7. [3] The following statements hold:

(1) every UP-filter of X is a UP-subalgebra,

(2) every UP-ideal of X is a UP-filter, and

(8) every strongly UP-ideal of X is a UP-ideal. Moreover, a UP-algebra X is the only one
strongly UP-ideal of itself.

3 Rough UP-Algebras

Definition 3.1. Let X be a set and p an equivalence relation on X and let P(X) denote
the power set of X. If x € X, then the p-class of x is the set (), defined as follows:

(), ={y € X | (z,y) € p}-
Define the functions p_ and py from P(X) to P(X) putting for every S € P(X),
p-(5) = {r € X | (2), € S,
pr(8) = {o € X | (2),1 S #0}.

p—(S) is called the lower approzimation of S while p(S) is called the upper approximation
of S. The set S is called definable if p_(S) = p4(S) and rough otherwise. The pair (X, p)
is called an approximation space.

Proposition 3.2. Let A and B be nonempty subsets of a UP-algebra X. If p is an equiva-
lence relation on X, then the following statements hold:

(1) p_(A) C AC py(A),

(2) AC B implies p—(A) € p—(B) and p+(A) € p1(B),
(3) p_(ANB) = p_(A)"p_(B),
(4) p_(AUB) 2 p_(A)Up_(B),
(5) p+(ANB) C py(A) Npy(B),
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(6) p+(AUB) = pi(4) U ps(B),
() p_(4) C (p_(A)),
(8) (p+(A)) C p4(4), and

(9) p_(A-B) C p_(4) - p_(B).

Proof. (1) Let € p_(A). Then (z), C A. By reflexivity, (z,z) € p so ¢ € (x),. Thus
x € A, that is, p_(A) € A. Let y € A. By reflexivity, (y,y) € psoy € (y),. Thus
ye(y),NA#D. Soy e py(A), that is, A C p,(A). Therefore, p_(A) C A C p,(A).

(2) Assume that A C B. Let z € p_(A). Then (z), € A C B. Thus x € p_(B), that is,
p—(A) C p_(B). Let z € p;(A). Then (x),NA # 0, so there is y € (z),NA. Thus y € (z),
and y € A C B, that is, y € (z), N B # 0. Thus x € p4(B). Hence, p1(A) C p4(B).

(3) By Proposition 3.2 (2), we get p_(ANB) C p_(A) and p_(ANB) C p_(B). Hence,
p—(ANB) C p_(A)Np_(B). On the other hand, let x € p_(A) N p_(B). Then x € p_(A)
and x € p_(B). Thus (z), € A and (z), € B. So (z), € AN B, that is, z € p_(AN B).
Therefore, p_(A) N p_(B) C p_(AN B). Hence, p_(4A) N p_(B) = p_(AN B).

(4) By Proposition 3.2 (2), we get p_(A) C p_(AUB) and p_(B) C p_(AU B). Hence,
p—(A)Up_(B) C p_(AU B).

(5) By Proposition 3.2 (2), we get p+(ANB) C p4(A) and py (AN B) C py(B). Hence,
p+(ANB) C pi(A)Npy(B).

(6) Let € py (AU B). Then (z), N (AU B) # 0. Thus ((z), N A) U ((z), N B) # 0,
we have (z), N A # 0 or (x), N B # 0. Hence, z € p;(A) or € p(B). Therefore, z €
p+(A)Upy(B), that is, p1 (AUB) C p4(A)Up4(B). On the other hand, p;(A) C p4(AUB)
and py(B) C p1 (AU B) by Proposition 3.2 (2). Hence, p4(A4) U p+(B) C p4+ (AU B), that
is, p+ (AU B) = p1(A) Upy(B).

(7) Let € p_(A’). Then (z), € A" and so (z), € A. Thus = ¢ p_(A), that is,
v € (p_(A)). Hence, p_(A) C (p_(A))".

(8) Let x € (p4+(A))". Then z ¢ p4(A) and so (z),NA = (. Thus x ¢ A, that is, z € A".
Therefore, (z), N A" # 0, that is, € p4(A’). Hence, (p4(A)) C p4(A).

(9) Now,

)
)

p_(A=B)=p_(ANB)
=p_(A)Np_(B) ((3))
C p-(A)N (- (B)) (7)
=p-(A) — p-(B)
Hence, p_(A— B) C p_(A) — p_(B). O

Remark 3.3. Let p be an equivalence relation on a set X. Then p_(X) = X = p4(X).

Proof. By Proposition 3.2 (1), we have p_(X) C X C py(X) and p4(X) C
X = p4(X). We shall show that X C p_(X). Let « € X. Then (z), € X. Thus
x € p_(X), that is, X C p_(X). Hence, p_(X) = X = p;(X). O

Definition 3.4. Let p be a congruence relation on X. Then the set of all p-classes is called
the quotient set of X by p, and is denoted by X/p. That is,

X/p=A{(z), |z € X}
Define a binary operation * on X/p by (z), * (y), = (x - y), for all z,y € X. Then
(X/p,*,(0),) is an algebra of type (2,0). Indeed, let (z1), = (22), and (y1), = (y2),. Then
(z1,22) € p and (y1,y2) € p, so (z1 - yY1,%2 - y2) € p because p is a congruence relation on
X. Hence, (z1), * (Y1), = (21 -y1)p = (T2 - y2)p = (22) * (y2) -
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Definition 3.5. For nonempty subsets A and B of a UP-algebra X = (X, -,0), we denote

A-B={a-bla€ Aand b < B}.

Lemma 3.6. If p is a congruence relation on X, then (z),-(y), € (x-y), for allz,y € X.

Proof. Let x,y € X and t € (), - (y),. Then t = a-b for some a € (2), and b € (y),.
Thus (a,z) € p and (b,y) € p. So (a-b,x-y) € p, that is, t =a-b € (x - y),. Therefore,
(l')p : (y)p C (x- y)p~ O

Example 3.7. Let X = {0, 1,2, 3} be a set with a binary operation - defined by the following
Cayley table:

|0 1 2 3
0j0 1 2 3
110 0 2 3
2/0 1 0 3
310 1 2 0

Then (X, -,0) is a UP-algebra. We see that
p= {(0, 0)’ (17 1), (27 2)7 (37 3)7 (07 1)7 (170)}
is a congruence relation on X. Thus
(0), =10,1},(1), ={0,1},(2), = {2}, and (3), = {3}.

Since (2-2), = (0), = {0,1} and (2), - (2), = {2} - {2} = {0}, we have (2),-(2), = {0} 2
{0,1} =(2-2),.

Proposition 3.8. Let A and B be nonempty subsets of X. If p is a congruence relation on
X, then py.(A) - py(B) € ps(A- B,

Proof. Let t € pi(A) - p+(B). Then t = x -y for some = € py(A) and y € p(B).
Thus (z), N A # 0 and (y), N B # 0, that is, a € (z), N A and b € (y), N B for some
a,b € X. By Lemma 3.6, we have a-b € (z),- (y), € (z-y), and a-b € A- B, so
a-be(x-y),N(A-B)#0. Thus (t),N(A-B) = (z-y),N(A-B) # 0, that is, t € py(A-B).
Hence, p (A) - py.(B) C p4(A- B). 0

Example 3.9. From Example 3.7, let A = {3} and B = {2,3}. Then A - B = {0,2},
po(A) = (3} and py (B) = 2,3). Thus p, (A)- py (B) = {0,2) 2 {0,1,2} = p (A - B).

4 Main Results

In the next part, we will research and analysis upper and lower rough UP-subalgebras (resp.,
rough UP-filters, rough UP-ideals and rough strongly UP-ideals) of UP-algebras, and discuss
some of their important properties and its generalizations.

Definition 4.1. Let S be a nonempty subset of X and p an equivalence relation on X.
Then S is called

(1) an upper rough UP-subalgebra of X if p4(S) is a UP-subalgebra of X,
(2) an upper rough UP-filter of X if p(S) is a UP-filter of X,
(3) an upper rough UP-ideal of X if py(S) is a UP-ideal of X,
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(4) an upper rough strongly UP-ideal of X if p4(S) is a strongly UP-ideal of X,

(5) a lower rough UP-subalgebra of X if p_(S) is a UP-subalgebra of X when p_(S) is
nonempty,

(6) a lower rough UP-filter of X if p_(.S) is a UP-filter of X when p_(.S) is nonempty,
(7) a lower rough UP-ideal of X if p_(S) is a UP-ideal of X when p_(S) is nonempty,

(8) a lower rough strongly UP-ideal of X if p_(S) is a strongly UP-ideal of X when p_(5)
is nonempty,

(9) a rough UP-subalgebra of X if it is both an upper and a lower rough UP-subalgebra
of X,

(10) a rough UP-filter of X if it is both an upper and a lower rough UP-filter of X,
(11) a rough UP-ideal of X if it is both an upper and a lower rough UP-ideal of X, and

(12) a rough strongly UP-ideal of X if it is both an upper and a lower rough strongly
UP-ideal of X.

Example 4.2. Let X = {0,1,2,3,4} be a set with a binary operation - defined by the
following Cayley table:

10 1 2 3 4
0j0 1 2 3 4
110 0 2 3 2
210 1 0 3 1
3101 2 0 4
4/0 0 0 3 0

Then (X, -,0) is a UP-algebra. We see that

p=1(0,0),(1,1),(2,2),(3,3),(4,4),(0,2),(2,0), (1,4), (4,1)}

is a congruence relation on X. Thus

(0), = (2)0 ={0,2}, (3)/) = {3}, and (1)/1 = (4)/1 ={1,4}.
We have

(1) S :={0,3} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X but p_(S) = {3}
is not a UP-ideal (resp., UP-filter and UP-subalgebra) of X. Thus S is not a lower
rough UP-ideal (resp., lower rough UP-filter and lower rough UP-subalgebra) of X.
Hence, S is not a rough UP-ideal (resp., rough UP-filter and rough UP-subalgebra) of
X.

(2) S :={0,2,4} is not a UP-subalgebra (resp., UP-filter and UP-ideal) of X but p_(S) =
{0,2} is a UP-subalgebra (resp., UP-filter and UP-ideal) and p4(S) = {0,1,2,4} is a
UP-subalgebra (resp., UP-filter and UP-ideal) of X. Thus S is both a lower and an
upper rough UP-subalgebra (resp., rough UP-filter and rough UP-ideal) of X. Hence,
S is a rough UP-subalgebra (resp., rough UP-filter and rough UP-ideal) of X.

(3) S :={0,1} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X. Then p_(S) =0
and p4(S) ={0,1,2,4}. Thus S is both a lower and an upper rough UP-ideal (resp.,
rough UP-filter and rough UP-subalgebra) of X. Hence, S is a rough UP-ideal (resp.,
rough UP-filter and rough UP-subalgebra) of X.
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(4) If p= X x X, then (0), = (1), = (2), = (3), = X. Thus S := {1, 3} is not a UP-ideal
(resp., UP-filter and UP-subalgebra) of X, and p_(S) = 0 and p4(S) = X, that is,
S is both a lower and an upper rough UP-ideal of X. Hence, S is a rough UP-ideal
(resp., rough UP-filter and rough UP-subalgebra) of X.

Theorem 4.3. Let p be a congruence relation on X. If C is a strongly UP-ideal of X,
then C' is a rough strongly UP-ideal of X .

Proof. Assume that C is a strongly UP-ideal of X. By Theorem 2.7 (3), we have C = X.
By Remark 3.3, we have p_(C) = X = p4(C). By Theorem 2.7 (3) again, we have p_(C)
and p4 (C) are strongly UP-ideals of X. Therefore, C' is a rough strongly UP-ideal of X. O

Example 4.4. From Example 4.2 (4), we have C := {0,1,2} is not a strongly UP-ideal
of X. Since p_(C) = 0 and p4(C) = X, we have C is both a lower and an upper rough
strongly UP-ideal of X. Hence, C is a rough strongly UP-ideal of X.

Theorem 4.5. Every rough strongly UP-ideal of X is a rough UP-ideal.

Proof. Let S be a rough strongly UP-ideal of X. Then p_(S) (if p_(S) is nonempty) and
p+(S) are strongly UP-ideals of X. By Theorem 2.7 (3), p—(S) (if p—(S) is nonempty) and
p+(S) are UP-ideals of X. Hence, S is a rough UP-ideal of X. O

Example 4.6. Let X = {0,1,2,3,4,5} be a set with a binary operation - defined by the
following Cayley table:

01 2 3 4 5
0/0 1 2 3 4 5
110 0 2 3 2 5
2/0 1 0 3 1 5
301 2 0 4 5
410 0 0 3 0 5
5/0 0 2 0 2 O

Then (X, -,0) is a UP-algebra. We see that
p=1(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(0,2),(2,0), (1,4), (4, 1)}

is a congruence relation on X. Thus

0), =(2), =1{0,2}, (1), = (4), = {1,4}, (3), = {3}, and (5), = {5}.

If S = {0,2,4}, then p_(S) = {0,2} and p4(S) = {0,1,2,4}. Thus p_(S) and p(S) are
UP-ideals of X. Hence, S is a rough UP-ideal of X. Since p_(S) # X and p(9) # X,
it follows from Theorem 2.7 (3) that p_(S) and p4(S) are not a strongly UP-ideal of X.
Hence, S is a rough UP-ideal of X but is not a rough strongly UP-ideal.

Theorem 4.7. Fvery rough UP-ideal of X is a rough UP-filter.

Proof. Let S be a rough UP-ideal of X. Then p_(S) (if p_(S) is nonempty) and p4(S) are
UP-ideals of X. By Theorem 2.7 (2), we have p_(S) (if p_(S) is nonempty) and p4(S) are
UP-filters of X. Hence, S is a rough UP-filter of X. O

Example 4.8. Let X = {0, 1,2, 3} be a set with a binary operation - defined by the following
Cayley table:

W N = O

O O O OO
= = O =
O O N NN
O NN WW
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Then (X, -,0) is a UP-algebra. We see that
p={(0,0),(1,1),(2,2),(3,3)}

is a congruence relation on X. Thus

(0), = {0}, (1), = {1}, (2), = {2}, and (3), = {3}-

If S ={0,1}, then p_(S) ={0,1} = p4-(S). Thus p_(S) and p4(S) are UP-filters of X but
are not a UP-ideal. Hence, S is a rough UP-filter of X but is not a rough UP-ideal.

Theorem 4.9. Every rough UP-filter of X is a rough UP-subalgebra.

Proof. Let S be a rough UP-filter of X. Then p_(S) (if p_(S) is nonempty) and p, (5) are
UP-filters of X. By Theorem 2.7 (1), we have p_(S) (if p_(.S) is nonempty) and p; (5) are
UP-subalgebras of X. Hence, S is a rough UP-subalgebra of X. O

Example 4.10. From Example 4.6, if S = {0,1,2,5}, then p_(S) = {0,2,5} and p4(S) =
{0,1,2,4,5}. Thus p_(S) and p4(S) are UP-subalgebras of X but are not a UP-filter.
Hence, S is a rough UP-subalgebra of X but is not a rough UP-filter.

By Theorem 4.5, 4.7, and 4.9 and Example 4.6, 4.8 and 4.10, we have that the notion of
rough UP-subalgebras is a generalization of rough UP-filters, the notion of rough UP-filters is
a generalization of rough UP-ideals, and the notion of rough UP-ideals is a generalization of
rough strongly UP-ideals. By Example 4.2, the notions of UP-subalgebras (resp., UP-filters
and UP-ideals) and rough UP-subalgebras (resp., rough UP-filters and rough UP-ideals) are
not identical. Hence, we have the following relation:

UP-subalgebra Rough UP-subalgebra

UP-filter Rough UP-filter

UP-ideal Rough UP-ideal

Strongly UP-ideal Rough strongly UP-ideal
Lemma 4.11. Let p be a congruence relation on X. If S is a UP-filter of X such that
(0), €S, then (s), €S foralls € S.

Proof. Assume that (s), ¢ S for some s € S. Then there is z € (s), but # ¢ S, so
(xz,s) € p. Since p is a congruence relation on X, we have (s-x,0) = (s-z,s-5) € p.
that is, s- 2 € (s- ), = (0), C 5. Since S is a UP-filter of X, we have € S which is a
contradiction. Hence (s), C S for all s € S. O

Definition 4.12. Let B be a UP-ideal of X. Define the binary relation ~p on X as follows:
for all z,y € X,
x~pgyifandonly ifx-y € Band y-x € B. (4.1)

~p_(S) is called the lower approzimation of S by B while ~p,(S) is called the upper
approximation of S by B. The set S is called definable with respect to B if ~5_(S) =
~p,(S) and rough with respect to B otherwise.
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Tampan [5] proved that ~p is a congruence relation on X.
Lemma 4.13. If B and C' are UP-ideals of X such that B C C, then ~gC~¢.
Proof. Let (x,y) €~p. Then x -y,y-x € B C C. Thus (z,y) €~¢. Hence ~gCr~¢. O

Proposition 4.14. Every nonempty subset of X is definable with respect to {0}.

Proof. Let S be a nonempty subset of X. If a € (2)~,,, then (a,z) € {0}. Thus a-z =

0=x-a. By (UP-4), we have a = z. Thus (z)~, = {z} for all z € X. Now,

N{O}_(S) = {$ eX | (.’IJ)N{O} < S}
={ze X |{z} €5}
={zeX|zeS}
=S

and

~oy, () ={z € X | (2)~ (o, NS # 0}
={ze X |{z}NnS#0}
={xeX|zeS}
=S.

Hence, ~0y _(S) =8 = ~{0}+(S’), that is, S is definable with respect to {0}. O
Theorem 4.15. [5] Let B be a UP-ideal of X. Then the following statements hold:
(1) the ~p-class (0)~, is a UP-ideal and a UP-subalgebra of X which B = (0)~p,
(2) a ~p-class ()~ is a UP-ideal of X if and only if v € B,
(3) a ~p-class ()~ is a UP-subalgebra of X if and only if x € B, and

(4) (X/ ~pB,*,(0)~,) is a UP-algebra under the x multiplication defined by ()~ 5% (Y)~py =
(y)~p forallz,y € X, called the quotient UP-algebra of X induced by the congruence
relation ~p.

Remark 4.16. If B is a UP-ideal of X, then ~p_(B) = B = ~p,(B). that is, B is
definable with respect to itself.

Proof. Assume that B is a UP-ideal of X. Let z € B. Then x-0=0¢€ Band 0-x =
x € B, that is, (z,0) €~p it follows from Theorem 4.15 that B = (0)~, = ()~ , S0 x €
~p_(B). Hence, B C ~p_(B) C ~p,(B). By Proposition 3.2 (1), we have ~5_(B) C B
so ~p_(B) = B. Finally, we shall show that ~p,(B) C B. Let z € ~p.(B). Then
(x)mpy N B # 0, so there is a; € ()~ and a; € B = (0)~,. Thus (z)n, = (az)n,; =
(0)~p = B, so x € B. Thus ~p,(B) C B. Hence, B = ~p,(B). O

Remark 4.17. Let S be a nonempty subset of X contained in a UP-ideal B of X. Then
NB+(S) = B and NB,(S) = (Z)

Proof. Let € ~p,(S). Then (z)., NS # 0. Since S C B, we have (z)., N B # 0.
By Remark 4.16, we have € ~p,(B) = B. Thus ~p,(S) € B. Next, we shall show
that B C ~p,(S). Let x € B. By Theorem 4.15 (1), we have x € B = (0),. Then
(@) = (0)ny = B, 50 (2)y N B # (. Thus © € ~p,(S). Hence, ~p,(S) = B. Finally,
we shall show that ~p_(S) = 0. Let ~5_(S) # (. Then there are z € ~p_(S). Thus
()~ €S C B. By Theorem 4.15 (1), we have z € B = (0),. Then (z)~, = (0)~, = B
which is a contradiction. Hence, ~g_(S) = 0. O

34



280

285

290

295

300

305

310

10 T. Klinseesook, S. Bukok and A. Ilampan

By Remark 4.17, we can see that S is a rough UP-ideal (resp., rough UP-filter and rough
UP-subalgebra) of X with respect to B.

Example 4.18. Let X = {0,1,2,3,4,5,6,7} be a set with a binary operation - defined by
the following Cayley table:

-0 1 2 3 4 5 6 7
0(j0 1 2 3 4 5 6 7
110 0 2 3 2 3 6 7
2/0 1 0 31 5 3 7
3/01 2 0 4 1 2 7
410 0 0 3 0 3 3 7
5(0 0 2 0 2 0 2 7
6/0 1 0 01 1 0 7
7/0 0O OO OO0 OO
Then (X,-,0) is a UP-algebra. Let B = {0,2}. Then B is a UP-ideal of X, so ~p is

a congruence relation on X. Thus (0)., (2)~y; = {0,2}, My = @)y = {1,4},
(3)wy = (6)ny ={3,6}, B)np = {5}, and (7)~, = {7}. Let S ={0,1,2,3,4,5}. Then S is
a UP-subalgebra of X but ~p_(S) = {0,1,2,4,5} is not a UP-subalgebra of X. Thus S is
not a lower rough UP-subalgebra of X. Hence, S is not a rough UP-subalgebra of X.

Theorem 4.19. Let S be a UP-subalgebra of X containing a UP-ideal B of X. Then
~py(S) is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra of X with
respect to B.

Proof. By Proposition 3.2 (1), we have S C ~p (S) # 0. Let z,y € ~p,(S). Then
(®)wpy NS # 0 and (y)u, NS # 0. Thus there exist az,a, € S such that a, € (z)-,
and ay € (y)~y. By Lemma 3.6, we have a, - ay € (T)np - (Y)ny C (T - Y)upy. Since S
is a UP-subalgebra of X, we have a, - ay, € S. Thus a, - ay € (z-y)~y NS # 0. Hence,
x-y € ~p,(9), that is, ~p, (S) is a UP-subalgebra of X. O

Example 4.20. From Example 4.18, we have S = {0, 2,4} is not a UP-subalgebra of X but
~p4(5)=1{0,1,2,4} is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra
of X with respect to B.

Theorem 4.21. Let S be a UP-filter of X containing a UP-ideal B of X. Then
(1) ~p_(S) is a UP-filter of X,
(2) ~py(S) is a UP-filter of X.

Moreover, S is a rough UP-filter of X with respect to B.

Proof. (1) Let € (0)~,,. Then (z,0) €~p, that is, z =0-2 € B C S. Thus (0)~, C S.
Hence 0 € ~p_(S). Next, let 2-y € ~g_(S) and v € ~p_(S5). Then (z-y)~, C S
and (z)~, € S. Thus x € S. We shall show that y € ~p_(S5), that is, (y)~, € S. Let
ay € (Y)~y. Since z € (z)~,, it follows from Lemma 3.6 that z - ay € ()~ - (Y)npy C
(- y)ny € S. Thus z-a, € S. Since S is a UP-filter of X, we have a, € S. Thus
(Y)~py C S, that is, y € ~p_(5). Hence, ~p_(S) is a UP-filter of X.

(2) Since 0 € (0)~, and 0 € S, we have 0 € (0), NS # 0. Hence, 0 € ~p,(5). Next,
let x-y € ~p,(S)and z € ~p,(S). Then (z-y)~, NS # 0 and (z)~, NS # 0. We shall
show that y € ~p, (5), that is, (y)~, NS # 0. Let u,v € S be such that u € (z-y)~, and
v € ()~y. Thus (u,z-y) €~p and (v,2) €E~p,sou-(x-y) € BC Sandv-z€ BCS.
Since u,v € S and S is a UP-filter of X, we have x -y € S and x € S and so y € S. Since
Y € (Y)mp, we have y € (y)u, NS # 0. Thus y € ~p,(S). Hence, ~p(S) is a UP-filter of
X. O
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Example 4.22. From Example 4.18, let S = {0,2,3}. Then S is not a UP-filter of X, But
~p_(5) ={0,2} and ~p,(S) = {0,2,3,6} are UP-filter of X, that is, S is both a lower
and an upper rough UP-filter of X with respect to B. Hence, S is a rough UP-filter of X
with respect to B.

Theorem 4.23. Let S be a UP-ideal of X containing a UP-ideal B of X. Then
(1) ~p_(S) is a UP-ideal of X,
(2) ~py(S) is a UP-ideal of X.

Moreover, S is a rough UP-ideal of X with respect to B.

Proof. (1) Let € (0)~,. Then (z,0) €~p, thatis, z =0-2z € B C S. Thus (0)~,
Hence, 0 € ~g_(S). Next, let z-(y-2) € ~p_(S) and y € ~5_(S). Then (z-(y-2))~p
and (y)~, € S. Thus y € S. We shall show that z -z € ~5_(9), that is, (z - 2)~, C S.
Since z+ (y-z) € (- (y-2))~p €S and S is a UP-ideal of X, we have z-z € S. By Lemma
4.11, we have (z - z)~, € S. Thus z - z € ~p_(S). Hence, ~p_(95) is a UP-ideal of X.

(2) Since 0 € (0)~,, and 0 € S, we have 0 € (0)~, NS # 0. Hence, 0 € ~p, (S). Next,
let - (y-2) € ~p,(S) and y € ~5,(S). Then (z-(y-2))uy, NS # 0 and (y)u, NS # 0.
We shall show that z -z € ~g(5), that is, (z - 2), NS # 0. Since (x- (Y- 2))ny; NS #0
and (y)~, NS # 0 so we have s1,s2 € S such that s; € (- (y-2))~py and s2 € (Y)my-
Thus (s1,2 - (y - 2)) €~p and (s2,y) E~p. 80 (x - (s2-2),x - (y - z)) E~p. By transitive,
(s1,2 - (s2+2)) €~p. Thus (s1)~y = (X - (82 2))~,. Since S is a UP-ideal of X, it follows
from Theorem 2.7 (2) that S is a UP-filter of X. By Lemma 4.11, we have (s1)~., C S.
Thus (z - (s2-2))~y C€S. Since - (s2-2) € (- (s2-2))~py €S and S is a UP-ideal of X,
wehave v -2 € S. Thusz -z € (x-2), NS # 0, that is, x - z € ~5(S). Hence, ~p,(5)
is a UP-ideal of X. O

Example 4.24. From Example 4.18, let S = {0,2,6}. Then S is not a UP-ideal of X, But
~p_(S) ={0,2} and ~p,(S) = {0,2,3,6} are UP-ideal of X, that is, S is both a lower
and an upper rough UP-ideal of X with respect to B. Hence, S is a rough UP-ideal of X
with respect to B.

Theorem 4.25. Let S be a subset of X containing a UP-ideal B of X. Then S is a strongly
UP-ideal of X with respect to B if and only if S is a lower rough strongly UP-ideal of X .

Proof. Let x € (0)~. Then (2,0) €~p, thatis,z =0-z € B C S. Thus (0)., C S. Hence,
0 € ~p_(S). Next, let (z-y)-(z-2) € ~p_(S)and y € ~p_(5). Then ((z-y)-(z-z))~, TS
and (y)~p € S. Thus y € S. We shall show that x € ~5_(S), that is, (z), C S. Let
a € (T)~y. Since y € (Y)~,, and z € ()~ ,, we have

(z-y) (z-0) € [(D)np - (Wnp] - [(2)np - (2)~s]
C(z:Y)npg (z-T)p (By Lemma 3.6)
C((z-y) (z2-2)~p (By Lemma 3.6)
cs.

Thus (z-y)-(z-a) € S. Since S is a strongly UP-ideal of X, we have a € S. Thus (x)., C S.
that is, € ~p_(5). Hence, ~p_(5) is a strongly UP-ideal of X. On the other hand, let S
be a lower rough strongly UP-ideal of X. Then ~pg_(S) is a strongly UP-ideal of X. Thus
X =~p_(S) CSC X. Hence, S = X, it follows from Theorem 2.7 (3) that S is a strongly
UP-ideal of X. O
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Theorem 4.26. Let S be a strongly UP-ideal of X containing a UP-ideal B of X. Then
~py(8) is a strongly UP-ideal of X, that is, S is an upper rough strongly UP-ideal of X
with respect to B.

Proof. Since 0 € (0)~, and 0 € S, we have 0 € (0)~,NS # 0. Hence, 0 € ~p_ (S). Next, let
(z-y) (z-x) € ~g,(S)and y € ~5(S). Then ((z-y) - (z-2))y NS # 0 and (y)~, NS # 0.
We shall show that z € ~p, (S5), that is, (x)~, NS # 0. Since ((z-y) - (z-x))uy NS # 0
and (y)~, NS # 0 so we have s1,s2 € S such that s1 € ((z-y) - (- 7))~y and s € (Y)ny-
Thus (s1,(z-y)-(z-2)) €~p and (s2,y) €E~p. Then ((z-s2)-(z-x),(2-y) - (2-2)) E~p. By
transitive, we have (s1,(z-s2)-(z-2)) €~p. Thus (s1)~; = ((2-82) - (2-))~,. Since S is a
strongly UP-ideal of X, we have S is a UP-filter of X. By Lemma 4.11, we have (s1)., C S.
Thus ((z-s2) - (z- @)~y € S. Since (z-s2) - (z-2) € ((z-52) - (2-2))py €S and S is
a strongly UP-ideal of X, we have x € S. Thus z € (z)~, NS # 0. Hence, z € ~p,(9).
Therefore, ~p, (S) is a strongly UP-ideal of X. O

Example 4.27. From Example 4.18, we have S = {0, 1,2,3,5,7} is not a strongly UP-ideal
of X but ~5,(5)=1{0,1,2,3,4,5,6,7} = X, it follows from Theorem 2.7 (3) that ~p (.5)
is a strongly UP-ideal of X, that is, S is an upper rough strongly UP-ideal of X with respect
to B.

By Theorem 4.19, 4.21, 4.23 and 4.25 and Example 4.20, 4.22, and 4.24, we have that
the notion of upper rough UP-subalgebras is a generalization of UP-subalgebras and rough
UP-subalgebras, rough UP-filters is a generalization of UP-filters, rough UP-ideals is a
generalization of UP-ideals, and rough strongly UP-ideals and strongly UP-ideals coincide.
Hence, we have the following relation:

ﬁ Upper rough UP-subalgebra ﬁ

UP-subalgebra Rough UP-subalgebra
UP-filter Rough UP-filter
UP-ideal Rough UP-ideal
Strongly UP-ideal Rough strongly UP-ideal
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