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ABSTRACT

In this paper, rough set theory is applied to UP-algebras, proved some results

and discussed the generalization of some notions of rough UP-subalgebras, rough

UP-filters, rough UP-ideals and rough strongly UP-ideals. Furthermore, we discuss
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CHAPTER 1

Introduction

Among many algebraic structures, algebras of logic form important class

of algebras. Examples of these are BCK-algebras [6], BCI-algebras [7], BCH-

algebras [4], KU-algebras [13], SU-algebras [9], UP-algebras [5] and others. They

are strongly connected with logic. For example, BCI-algebras introduced by Iséki

[7] in 1966 have connections with BCI-logic being the BCI-system in combinatory

logic which has application in the language of functional programming. BCK and

BCI-algebras are two classes of logical algebras. They were introduced by Imai and

Iséki [6, 7] in 1966 and have been extensively investigated by many researchers.

It is known that the class of BCK-algebras is a proper subclass of the class of

BCI-algebras.

The notion of rough sets was first considered by Pawlak [12] in 1982. After

the introduction of the notion of rough sets, several authors were conducted on the

generalizations of the notion of rough sets and application to many many algebraic

structures such as: In 1994, Biswas and Nanda [1] introduced and discussed the

notion of rough groups and rough subgroups. Rough set theory is applied to

semigroups and groups by Kuroki [10], and Kuroki and Mordeson [11] in 1997.

In 2002, Jun [8] and Dudek et al. [2] applied rough set theory to BCK-algebras

and BCI-algebras. In 2016, Mao and Zhou [8] applied rough set theory to pseudo-

BCK-algebras.

In this paper, we apply the rough set theory to UP-algebras, introduce the

notion of upper and lower rough UP-subalgebras (resp., rough UP-filters, rough

UP-ideals and rough strongly UP-ideals) of UP-algebras, and discuss some of their

important properties and its generalizations.



CHAPTER 2

Basic Results on UP-Algebras

An algebra X = (X, ·, 0) of type (2, 0) is called a UP-algebra [5], where X

is a nonempty set, · is a binary operation on X, and 0 is a fixed element of X (i.e.,

a nullary operation) if it satisfies the following axioms: for any x, y, z ∈ X,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = 0 and y · x = 0 imply x = y.

From [5], we know that the notion of UP-algebras is a generalization of

KU-algebras.

Example 2.1. [5] Let X be a universal set. Define two binary operations · and

∗ on the power set of X by putting A · B = B ∩ A′ and A ∗ B = B ∪ A′ for

all A, B ∈ P(X). Then (P(X), ·, ∅) and (P(X), ∗, X) are UP-algebras and we

shall call it the power UP-algebra of type 1 and the power UP-algebra of type 2,

respectively.

The following is an important property of UP-algebras.

Proposition 2.2. [5] In a UP-algebra X, the following properties hold: for any

x, y, z ∈ X,

(1) x · x = 0,

(2) x · y = 0 and y · z = 0 imply x · z = 0,

(3) x · y = 0 implies (z · x) · (z · y) = 0,

(4) x · y = 0 implies (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,
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(6) (y · x) · x = 0 if and only if x = y · x, and

(7) x · (y · y) = 0.

In what follows, let X denote a UP-algebra unless otherwise specified.

Definition 2.3. [5] A subset S of X is called a UP-subalgebra of X if the constant

0 of X is in S, and (S, ·, 0) itself forms a UP-algebra.

Iampan [5] proved the useful criteria that a nonempty subset S of a UP-

algebra X = (X, ·, 0) is a UP-subalgebra of X if and only if S is closed under the

· multiplication on X.

Definition 2.4. [14] A subset F of X is called a UP-filter of X if it satisfies the

following properties:

(1) the constant 0 of X is in F , and

(2) for any x, y ∈ X, x · y ∈ F and x ∈ F imply y ∈ F .

Definition 2.5. [5] A subset B of X is called a UP-ideal of X if it satisfies the

following properties:

(1) the constant 0 of X is in B, and

(2) for any x, y, z ∈ X, x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.

Definition 2.6. [3] A subset C of X is called a strongly UP-ideal of X if it satisfies

the following properties:

(1) the constant 0 of X is in C, and

(2) for any x, y, z ∈ X, (z · y) · (z · x) ∈ C and y ∈ C imply x ∈ C.

Theorem 2.7. [3] The following statements hold:

(1) every UP-filter of X is a UP-subalgebra,

(2) every UP-ideal of X is a UP-filter, and

(3) every strongly UP-ideal of X is a UP-ideal. Moreover, a UP-algebra X is the

only one strongly UP-ideal of itself.



CHAPTER 3

Rough UP-Algebras

Definition 3.1. Let X be a set and ρ an equivalence relation on X and let P(X)

denote the power set of X. If x ∈ X, then the ρ-class of x is the set (x)ρ defined

as follows:

(x)ρ = {y ∈ X | (x, y) ∈ ρ}.

Define the functions ρ− and ρ+ from P(X) to P(X) putting for every S ∈ P(X),

ρ−(S) = {x ∈ X | (x)ρ ⊆ S},

ρ+(S) = {x ∈ X | (x)ρ ∩ S 6= ∅}.

ρ−(S) is called the lower approximation of S while ρ+(S) is called the upper approx-

imation of S. The set S is called definable if ρ−(S) = ρ+(S) and rough otherwise.

The pair (X, ρ) is called an approximation space.

Proposition 3.2. Let A and B be nonempty subsets of a UP-algebra X. If ρ is an

equivalence relation on X, then the following statements hold:

(1) ρ−(A) ⊆ A ⊆ ρ+(A),

(2) A ⊆ B implies ρ−(A) ⊆ ρ−(B) and ρ+(A) ⊆ ρ+(B),

(3) ρ−(A ∩B) = ρ−(A) ∩ ρ−(B),

(4) ρ−(A ∪B) ⊇ ρ−(A) ∪ ρ−(B),

(5) ρ+(A ∩B) ⊆ ρ+(A) ∩ ρ+(B),

(6) ρ+(A ∪B) = ρ+(A) ∪ ρ+(B),

(7) ρ−(A′) ⊆ (ρ−(A))′,

(8) (ρ+(A))′ ⊆ ρ+(A′), and

(9) ρ−(A−B) ⊆ ρ−(A)− ρ−(B).
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Proof. (1) Let x ∈ ρ−(A). Then (x)ρ ⊆ A. By reflexivity, (x, x) ∈ ρ so x ∈ (x)ρ.

Thus x ∈ A, that is, ρ−(A) ⊆ A. Let y ∈ A. By reflexivity, (y, y) ∈ ρ so

y ∈ (y)ρ. Thus y ∈ (y)ρ ∩ A 6= ∅. So y ∈ ρ+(A), that is, A ⊆ ρ+(A). Therefore,

ρ−(A) ⊆ A ⊆ ρ+(A).

(2) Assume that A ⊆ B. Let x ∈ ρ−(A). Then (x)ρ ⊆ A ⊆ B. Thus

x ∈ ρ−(B), that is, ρ−(A) ⊆ ρ−(B). Let x ∈ ρ+(A). Then (x)ρ ∩ A 6= ∅, so there

is y ∈ (x)ρ ∩ A. Thus y ∈ (x)ρ and y ∈ A ⊆ B, that is, y ∈ (x)ρ ∩ B 6= ∅. Thus

x ∈ ρ+(B). Hence, ρ+(A) ⊆ ρ+(B).

(3) By Proposition 3.2 (2), we get ρ−(A ∩ B) ⊆ ρ−(A) and ρ−(A ∩ B) ⊆

ρ−(B). Hence, ρ−(A ∩ B) ⊆ ρ−(A) ∩ ρ−(B). On the other hand, let x ∈ ρ−(A) ∩

ρ−(B). Then x ∈ ρ−(A) and x ∈ ρ−(B). Thus (x)ρ ⊆ A and (x)ρ ⊆ B. So

(x)ρ ⊆ A ∩ B, that is, x ∈ ρ−(A ∩ B). Therefore, ρ−(A) ∩ ρ−(B) ⊆ ρ−(A ∩ B).

Hence, ρ−(A) ∩ ρ−(B) = ρ−(A ∩B).

(4) By Proposition 3.2 (2), we get ρ−(A) ⊆ ρ−(A ∪ B) and ρ−(B) ⊆

ρ−(A ∪B). Hence, ρ−(A) ∪ ρ−(B) ⊆ ρ−(A ∪B).

(5) By Proposition 3.2 (2), we get ρ+(A ∩ B) ⊆ ρ+(A) and ρ+(A ∩ B) ⊆

ρ+(B). Hence, ρ+(A ∩B) ⊆ ρ+(A) ∩ ρ+(B).

(6) Let x ∈ ρ+(A∪B). Then (x)ρ∩ (A∪B) 6= ∅. Thus ((x)ρ∩A)∪ ((x)ρ∩

B) 6= ∅, we have (x)ρ ∩ A 6= ∅ or (x)ρ ∩ B 6= ∅. Hence, x ∈ ρ+(A) or x ∈ ρ+(B).

Therefore, x ∈ ρ+(A)∪ ρ+(B), that is, ρ+(A∪B) ⊆ ρ+(A)∪ ρ+(B). On the other

hand, ρ+(A) ⊆ ρ+(A∪B) and ρ+(B) ⊆ ρ+(A∪B) by Proposition 3.2 (2). Hence,

ρ+(A) ∪ ρ+(B) ⊆ ρ+(A ∪B), that is, ρ+(A ∪B) = ρ+(A) ∪ ρ+(B).

(7) Let x ∈ ρ−(A′). Then (x)ρ ⊆ A′ and so (x)ρ * A. Thus x /∈ ρ−(A),

that is, x ∈ (ρ−(A))′. Hence, ρ−(A′) ⊆ (ρ−(A))′.

(8) Let x ∈ (ρ+(A))′. Then x /∈ ρ+(A) and so (x)ρ ∩ A = ∅. Thus

x /∈ A, that is, x ∈ A′. Therefore, (x)ρ ∩ A′ 6= ∅, that is, x ∈ ρ+(A′). Hence,

(ρ+(A))′ ⊆ ρ+(A′).
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(9) Now,

ρ−(A−B) = ρ−(A ∩B′)

= ρ−(A) ∩ ρ−(B′) ((3))

⊆ ρ−(A) ∩ (ρ−(B))′ ((7))

= ρ−(A)− ρ−(B).

Hence, ρ−(A−B) ⊆ ρ−(A)− ρ−(B).

Remark 3.3. Let ρ be an equivalence relation on a set X. Then ρ−(X) = X =

ρ+(X).

Proof. By Proposition 3.2 (1), we have ρ−(X) ⊆ X ⊆ ρ+(X) and ρ+(X) ⊆ X.

Thus X = ρ+(X). We shall show that X ⊆ ρ−(X). Let x ∈ X. Then (x)ρ ⊆ X.

Thus x ∈ ρ−(X), that is, X ⊆ ρ−(X). Hence, ρ−(X) = X = ρ+(X).

Definition 3.4. Let ρ be a congruence relation on X. Then the set of all ρ-classes

is called the quotient set of X by ρ, and is denoted by X/ρ. That is,

X/ρ = {(x)ρ | x ∈ X}.

Define a binary operation ∗ on X/ρ by (x)ρ ∗ (y)ρ = (x · y)ρ for all x, y ∈ X.

Then (X/ρ, ∗, (0)ρ) is an algebra of type (2, 0). Indeed, let (x1)ρ = (x2)ρ and

(y1)ρ = (y2)ρ. Then (x1, x2) ∈ ρ and (y1, y2) ∈ ρ, so (x1 ·y1, x2 ·y2) ∈ ρ because ρ is a

congruence relation on X. Hence, (x1)ρ∗(y1)ρ = (x1 ·y1)ρ = (x2 ·y2)ρ = (x2)ρ∗(y2)ρ.

Definition 3.5. For nonempty subsets A and B of a UP-algebra X = (X, ·, 0), we

denote

A ·B = {a · b | a ∈ A and b ∈ B}.

Lemma 3.6. If ρ is a congruence relation on X, then (x)ρ · (y)ρ ⊆ (x · y)ρ for all

x, y ∈ X.

Proof. Let x, y ∈ X and t ∈ (x)ρ ·(y)ρ. Then t = a·b for some a ∈ (x)ρ and b ∈ (y)ρ.

Thus (a, x) ∈ ρ and (b, y) ∈ ρ. So (a · b, x · y) ∈ ρ, that is, t = a · b ∈ (x · y)ρ.

Therefore, (x)ρ · (y)ρ ⊆ (x · y)ρ.
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Example 3.7. Let X = {0, 1, 2, 3} be a set with a binary operation · defined by the

following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 3

2 0 1 0 3

3 0 1 2 0

Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)}

is a congruence relation on X. Thus

(0)ρ = {0, 1}, (1)ρ = {0, 1}, (2)ρ = {2}, and (3)ρ = {3}.

Since (2 · 2)ρ = (0)ρ = {0, 1} and (2)ρ · (2)ρ = {2} · {2} = {0}, we have (2)ρ · (2)ρ =

{0} + {0, 1} = (2 · 2)ρ.

Proposition 3.8. Let A and B be nonempty subsets of X. If ρ is a congruence

relation on X, then ρ+(A) · ρ+(B) ⊆ ρ+(A ·B).

Proof. Let t ∈ ρ+(A) · ρ+(B). Then t = x · y for some x ∈ ρ+(A) and y ∈ ρ+(B).

Thus (x)ρ ∩ A 6= ∅ and (y)ρ ∩ B 6= ∅, that is, a ∈ (x)ρ ∩ A and b ∈ (y)ρ ∩ B for

some a, b ∈ X. By Lemma 3.6, we have a · b ∈ (x)ρ · (y)ρ ⊆ (x ·y)ρ and a · b ∈ A ·B,

so a · b ∈ (x · y)ρ ∩ (A ·B) 6= ∅. Thus (t)ρ ∩ (A ·B) = (x · y)ρ ∩ (A ·B) 6= ∅, that is,

t ∈ ρ+(A ·B). Hence, ρ+(A) · ρ+(B) ⊆ ρ+(A ·B).

Example 3.9. From Example 3.7, let A = {3} and B = {2, 3}. Then A ·B = {0, 2},

ρ+(A) = {3} and ρ+(B) = {2, 3}. Thus ρ+(A) · ρ+(B) = {0, 2} + {0, 1, 2} =

ρ+(A ·B).



CHAPTER 4

Main Results

In this chapter, we will research and analysis upper and lower rough

UP-subalgebras (resp., rough UP-filters, rough UP-ideals and rough strongly UP-

ideals) of UP-algebras, and discuss some of their important properties and its

generalizations.

Definition 4.1. Let S be a nonempty subset of X and ρ an equivalence relation on

X. Then S is called

(1) an upper rough UP-subalgebra of X if ρ+(S) is a UP-subalgebra of X,

(2) an upper rough UP-filter of X if ρ+(S) is a UP-filter of X,

(3) an upper rough UP-ideal of X if ρ+(S) is a UP-ideal of X,

(4) an upper rough strongly UP-ideal of X if ρ+(S) is a strongly UP-ideal of X,

(5) a lower rough UP-subalgebra of X if ρ−(S) is a UP-subalgebra of X when

ρ−(S) is nonempty,

(6) a lower rough UP-filter of X if ρ−(S) is a UP-filter of X when ρ−(S) is

nonempty,

(7) a lower rough UP-ideal of X if ρ−(S) is a UP-ideal of X when ρ−(S) is

nonempty,

(8) a lower rough strongly UP-ideal of X if ρ−(S) is a strongly UP-ideal of X

when ρ−(S) is nonempty,

(9) a rough UP-subalgebra of X if it is both an upper and a lower rough UP-

subalgebra of X,

(10) a rough UP-filter of X if it is both an upper and a lower rough UP-filter of

X,
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(11) a rough UP-ideal of X if it is both an upper and a lower rough UP-ideal of

X, and

(12) a rough strongly UP-ideal of X if it is both an upper and a lower rough

strongly UP-ideal of X.

Example 4.2. Let X = {0, 1, 2, 3, 4} be a set with a binary operation · defined by

the following Cayley table:

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 2 3 2

2 0 1 0 3 1

3 0 1 2 0 4

4 0 0 0 3 0

Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 2), (2, 0), (1, 4), (4, 1)}

is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (3)ρ = {3}, and (1)ρ = (4)ρ = {1, 4}.

We have

(1) S := {0, 3} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X but

ρ−(S) = {3} is not a UP-ideal (resp., UP-filter and UP-subalgebra) of X.

Thus S is not a lower rough UP-ideal (resp., lower rough UP-filter and lower

rough UP-subalgebra) of X. Hence, S is not a rough UP-ideal (resp., rough

UP-filter and rough UP-subalgebra) of X.

(2) S := {0, 2, 4} is not a UP-subalgebra (resp., UP-filter and UP-ideal) of X

but ρ−(S) = {0, 2} is a UP-subalgebra (resp., UP-filter and UP-ideal) and

ρ+(S) = {0, 1, 2, 4} is a UP-subalgebra (resp., UP-filter and UP-ideal) of X.

Thus S is both a lower and an upper rough UP-subalgebra (resp., rough UP-

filter and rough UP-ideal) of X. Hence, S is a rough UP-subalgebra (resp.,

rough UP-filter and rough UP-ideal) of X.
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(3) S := {0, 1} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X. Then

ρ−(S) = ∅ and ρ+(S) = {0, 1, 2, 4}. Thus S is both a lower and an up-

per rough UP-ideal (resp., rough UP-filter and rough UP-subalgebra) of

X. Hence, S is a rough UP-ideal (resp., rough UP-filter and rough UP-

subalgebra) of X.

(4) If ρ = X × X, then (0)ρ = (1)ρ = (2)ρ = (3)ρ = X. Thus S := {1, 3} is

not a UP-ideal (resp., UP-filter and UP-subalgebra) of X, and ρ−(S) = ∅

and ρ+(S) = X, that is, S is both a lower and an upper rough UP-ideal

of X. Hence, S is a rough UP-ideal (resp., rough UP-filter and rough UP-

subalgebra) of X.

Theorem 4.3. Let ρ be a congruence relation on X. If C is a strongly UP-ideal of

X, then C is a rough strongly UP-ideal of X.

Proof. Assume that C is a strongly UP-ideal of X. By Theorem 2.7 (3), we have

C = X. By Remark 3.3, we have ρ−(C) = X = ρ+(C). By Theorem 2.7 (3) again,

we have ρ−(C) and ρ+(C) are strongly UP-ideals of X. Therefore, C is a rough

strongly UP-ideal of X.

Example 4.4. From Example 4.2 (4), we have C := {0, 1, 2} is not a strongly UP-

ideal of X. Since ρ−(C) = ∅ and ρ+(C) = X, we have C is both a lower and an

upper rough strongly UP-ideal of X. Hence, C is a rough strongly UP-ideal of X.

Theorem 4.5. Every rough strongly UP-ideal of X is a rough UP-ideal.

Proof. Let S be a rough strongly UP-ideal of X. Then ρ−(S) (if ρ−(S) is nonempty)

and ρ+(S) are strongly UP-ideals of X. By Theorem 2.7 (3), ρ−(S) (if ρ−(S) is

nonempty) and ρ+(S) are UP-ideals of X. Hence, S is a rough UP-ideal of X.

Example 4.6. Let X = {0, 1, 2, 3, 4, 5} be a set with a binary operation · defined



11

by the following Cayley table:

· 0 1 2 3 4 5

0 0 1 2 3 4 5

1 0 0 2 3 2 5

2 0 1 0 3 1 5

3 0 1 2 0 4 5

4 0 0 0 3 0 5

5 0 0 2 0 2 0

Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 2), (2, 0), (1, 4), (4, 1)}

is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (1)ρ = (4)ρ = {1, 4}, (3)ρ = {3}, and (5)ρ = {5}.

If S = {0, 2, 4}, then ρ−(S) = {0, 2} and ρ+(S) = {0, 1, 2, 4}. Thus ρ−(S) and

ρ+(S) are UP-ideals of X. Hence, S is a rough UP-ideal of X. Since ρ−(S) 6= X

and ρ+(S) 6= X, it follows from Theorem 2.7 (3) that ρ−(S) and ρ+(S) are not

a strongly UP-ideal of X. Hence, S is a rough UP-ideal of X but is not a rough

strongly UP-ideal.

Theorem 4.7. Every rough UP-ideal of X is a rough UP-filter.

Proof. Let S be a rough UP-ideal of X. Then ρ−(S) (if ρ−(S) is nonempty)

and ρ+(S) are UP-ideals of X. By Theorem 2.7 (2), we have ρ−(S) (if ρ−(S) is

nonempty) and ρ+(S) are UP-filters of X. Hence, S is a rough UP-filter of X.

Example 4.8. Let X = {0, 1, 2, 3} be a set with a binary operation · defined by the

following Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

Then (X, ·, 0) is a UP-algebra. We see that
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ρ = {(0, 0), (1, 1), (2, 2), (3, 3)}

is a congruence relation on X. Thus

(0)ρ = {0}, (1)ρ = {1}, (2)ρ = {2}, and (3)ρ = {3}.

If S = {0, 1}, then ρ−(S) = {0, 1} = ρ+(S). Thus ρ−(S) and ρ+(S) are UP-filters

of X but are not a UP-ideal. Hence, S is a rough UP-filter of X but is not a rough

UP-ideal.

Theorem 4.9. Every rough UP-filter of X is a rough UP-subalgebra.

Proof. Let S be a rough UP-filter of X. Then ρ−(S) (if ρ−(S) is nonempty)

and ρ+(S) are UP-filters of X. By Theorem 2.7 (1), we have ρ−(S) (if ρ−(S) is

nonempty) and ρ+(S) are UP-subalgebras of X. Hence, S is a rough UP-subalgebra

of X.

Example 4.10. From Example 4.6, if S = {0, 1, 2, 5}, then ρ−(S) = {0, 2, 5} and

ρ+(S) = {0, 1, 2, 4, 5}. Thus ρ−(S) and ρ+(S) are UP-subalgebras of X but are not

a UP-filter. Hence, S is a rough UP-subalgebra of X but is not a rough UP-filter.

By Theorem 4.5, 4.7, and 4.9 and Example 4.6, 4.8 and 4.10, we have that

the notion of rough UP-subalgebras is a generalization of rough UP-filters, the

notion of rough UP-filters is a generalization of rough UP-ideals, and the notion

of rough UP-ideals is a generalization of rough strongly UP-ideals. By Example

4.2, the notions of UP-subalgebras (resp., UP-filters and UP-ideals) and rough

UP-subalgebras (resp., rough UP-filters and rough UP-ideals) are not identical.

Hence, we have the following relation:
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Figure 1: Relation 1

Lemma 4.11. Let ρ be a congruence relation on X. If S is a UP-filter of X such

that (0)ρ ⊆ S, then (s)ρ ⊆ S for all s ∈ S.

Proof. Assume that (s)ρ * S for some s ∈ S. Then there is x ∈ (s)ρ but x /∈ S, so

(x, s) ∈ ρ. Since ρ is a congruence relation on X, we have (s ·x, 0) = (s ·x, s ·s) ∈ ρ.

that is, s · x ∈ (s · x)ρ = (0)ρ ⊆ S. Since S is a UP-filter of X, we have x ∈ S

which is a contradiction. Hence (s)ρ ⊆ S for all s ∈ S.

Definition 4.12. Let B be a UP-ideal of X. Define the binary relation ∼B on X

as follows: for all x, y ∈ X,

x ∼B y if and only if x · y ∈ B and y · x ∈ B. (4.1)

∼B−(S) is called the lower approximation of S by B while ∼B+(S) is called the

upper approximation of S by B. The set S is called definable with respect to B if

∼B−(S) = ∼B+(S) and rough with respect to B otherwise.

Iampan [5] proved that ∼B is a congruence relation on X.

Lemma 4.13. If B and C are UP-ideals of X such that B ⊆ C, then ∼B⊆∼C.

Proof. Let (x, y) ∈∼B. Then x · y, y · x ∈ B ⊆ C. Thus (x, y) ∈∼C . Hence

∼B⊆∼C .
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Proposition 4.14. Every nonempty subset of X is definable with respect to {0}.

Proof. Let S be a nonempty subset of X. If a ∈ (x)∼{0} , then (a, x) ∈ {0}. Thus

a · x = 0 = x · a. By (UP-4), we have a = x. Thus (x)∼{0} = {x} for all x ∈ X.

Now,

∼{0}−(S) = {x ∈ X | (x)∼{0} ⊆ S}

= {x ∈ X | {x} ⊆ S}

= {x ∈ X | x ∈ S}

= S

and

∼{0}+
(S) = {x ∈ X | (x)∼{0} ∩ S 6= ∅}

= {x ∈ X | {x} ∩ S 6= ∅}

= {x ∈ X | x ∈ S}

= S.

Hence, ∼{0}−(S) = S = ∼{0}+
(S), that is, S is definable with respect to

{0}.

Theorem 4.15. [5] Let B be a UP-ideal of X. Then the following statements hold:

(1) the ∼B-class (0)∼B
is a UP-ideal and a UP-subalgebra of X which B = (0)∼B

,

(2) a ∼B-class (x)∼B
is a UP-ideal of X if and only if x ∈ B,

(3) a ∼B-class (x)∼B
is a UP-subalgebra of X if and only if x ∈ B, and

(4) (X/ ∼B, ∗, (0)∼B
) is a UP-algebra under the ∗ multiplication defined by (x)∼B

∗

(y)∼B
= (x·y)∼B

for all x, y ∈ X, called the quotient UP-algebra of X induced

by the congruence relation ∼B.

Remark 4.16. If B is a UP-ideal of X, then ∼B−(B) = B = ∼B+(B). that is, B

is definable with respect to itself.
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Proof. Assume that B is a UP-ideal of X. Let x ∈ B. Then x · 0 = 0 ∈ B and

0 · x = x ∈ B, that is, (x, 0) ∈∼B it follows from Theorem 4.15 that B = (0)∼B
=

(x)∼B
, so x ∈ ∼B−(B). Hence, B ⊆ ∼B−(B) ⊆ ∼B+(B). By Proposition 3.2 (1),

we have ∼B−(B) ⊆ B so ∼B−(B) = B. Finally, we shall show that ∼B+(B) ⊆ B.

Let x ∈ ∼B+(B). Then (x)∼B
∩B 6= ∅, so there is ax ∈ (x)∼B

and ax ∈ B = (0)∼B
.

Thus (x)∼B
= (ax)∼B

= (0)∼B
= B, so x ∈ B. Thus ∼B+(B) ⊆ B. Hence,

B = ∼B+(B).

Remark 4.17. Let S be a nonempty subset of X contained in a UP-ideal B of X.

Then ∼B+(S) = B and ∼B−(S) = ∅.

Proof. Let x ∈ ∼B+(S). Then (x)∼B
∩S 6= ∅. Since S ⊂ B, we have (x)∼B

∩B 6= ∅.

By Remark 4.16, we have x ∈ ∼B+(B) = B. Thus ∼B+(S) ⊆ B. Next, we shall

show that B ⊆ ∼B+(S). Let x ∈ B. By Theorem 4.15 (1), we have x ∈ B = (0)∼B
.

Then (x)∼B
= (0)∼B

= B, so (x)∼B
∩B 6= ∅. Thus x ∈ ∼B+(S). Hence, ∼B+(S) =

B. Finally, we shall show that ∼B−(S) = ∅. Let ∼B−(S) 6= ∅. Then there are

x ∈ ∼B−(S). Thus (x)∼B
⊆ S ⊂ B. By Theorem 4.15 (1), we have x ∈ B = (0)∼B

.

Then (x)∼B
= (0)∼B

= B which is a contradiction. Hence, ∼B−(S) = ∅.

By Remark 4.17, we can see that S is a rough UP-ideal (resp., rough

UP-filter and rough UP-subalgebra) of X with respect to B.

Example 4.18. Let X = {0, 1, 2, 3, 4, 5, 6, 7} be a set with a binary operation ·

defined by the following Cayley table:

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 0 0 2 3 2 3 6 7

2 0 1 0 3 1 5 3 7

3 0 1 2 0 4 1 2 7

4 0 0 0 3 0 3 3 7

5 0 0 2 0 2 0 2 7

6 0 1 0 0 1 1 0 7

7 0 0 0 0 0 0 0 0
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Then (X, ·, 0) is a UP-algebra. Let B = {0, 2}. Then B is a UP-ideal of X, so ∼B is

a congruence relation on X. Thus (0)∼B
= (2)∼B

= {0, 2}, (1)∼B
= (4)∼B

= {1, 4},

(3)∼B
= (6)∼B

= {3, 6}, (5)∼B
= {5}, and (7)∼B

= {7}. Let S = {0, 1, 2, 3, 4, 5}.

Then S is a UP-subalgebra of X but∼B−(S) = {0, 1, 2, 4, 5} is not a UP-subalgebra

of X. Thus S is not a lower rough UP-subalgebra of X. Hence, S is not a rough

UP-subalgebra of X.

Theorem 4.19. Let S be a UP-subalgebra of X containing a UP-ideal B of X.

Then ∼B+(S) is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra

of X with respect to B.

Proof. By Proposition 3.2 (1), we have S ⊆ ∼B+(S) 6= ∅. Let x, y ∈ ∼B+(S). Then

(x)∼B
∩S 6= ∅ and (y)∼B

∩S 6= ∅. Thus there exist ax, ay ∈ S such that ax ∈ (x)∼B

and ay ∈ (y)∼B
. By Lemma 3.6, we have ax · ay ∈ (x)∼B

· (y)∼B
⊆ (x · y)∼B

. Since

S is a UP-subalgebra of X, we have ax · ay ∈ S. Thus ax · ay ∈ (x · y)∼B
∩ S 6= ∅.

Hence, x · y ∈ ∼B+(S), that is, ∼B+(S) is a UP-subalgebra of X.

Example 4.20. From Example 4.18, we have S = {0, 2, 4} is not a UP-subalgebra

of X but ∼B+(S) = {0, 1, 2, 4} is a UP-subalgebra of X, that is, S is an upper

rough UP-subalgebra of X with respect to B.

Theorem 4.21. Let S be a UP-filter of X containing a UP-ideal B of X. Then

(1) ∼B−(S) is a UP-filter of X,

(2) ∼B+(S) is a UP-filter of X.

Moreover, S is a rough UP-filter of X with respect to B.

Proof. (1) Let x ∈ (0)∼B
. Then (x, 0) ∈∼B, that is, x = 0 · x ∈ B ⊆ S. Thus

(0)∼B
⊆ S. Hence 0 ∈ ∼B−(S). Next, let x · y ∈ ∼B−(S) and x ∈ ∼B−(S). Then

(x · y)∼B
⊆ S and (x)∼B

⊆ S. Thus x ∈ S. We shall show that y ∈ ∼B−(S), that

is, (y)∼B
⊆ S. Let ay ∈ (y)∼B

. Since x ∈ (x)∼B
, it follows from Lemma 3.6 that

x · ay ∈ (x)∼B
· (y)∼B

⊆ (x · y)∼B
⊆ S. Thus x · ay ∈ S. Since S is a UP-filter of

X, we have ay ∈ S. Thus (y)∼B
⊆ S, that is, y ∈ ∼B−(S). Hence, ∼B−(S) is a

UP-filter of X.
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(2) Since 0 ∈ (0)∼B
and 0 ∈ S, we have 0 ∈ (0)∼B

∩ S 6= ∅. Hence,

0 ∈ ∼B+(S). Next, let x · y ∈ ∼B+(S) and x ∈ ∼B+(S). Then (x · y)∼B
∩ S 6= ∅

and (x)∼B
∩ S 6= ∅. We shall show that y ∈ ∼B+(S), that is, (y)∼B

∩ S 6= ∅.

Let u, v ∈ S be such that u ∈ (x · y)∼B
and v ∈ (x)∼B

. Thus (u, x · y) ∈∼B and

(v, x) ∈∼B, so u · (x · y) ∈ B ⊆ S and v · x ∈ B ⊆ S. Since u, v ∈ S and S is

a UP-filter of X, we have x · y ∈ S and x ∈ S and so y ∈ S. Since y ∈ (y)∼B
,

we have y ∈ (y)∼B
∩ S 6= ∅. Thus y ∈ ∼B+(S). Hence, ∼B+(S) is a UP-filter of

X.

Example 4.22. From Example 4.18, let S = {0, 2, 3}. Then S is not a UP-filter of

X, But ∼B−(S) = {0, 2} and ∼B+(S) = {0, 2, 3, 6} are UP-filter of X, that is, S

is both a lower and an upper rough UP-filter of X with respect to B. Hence, S is

a rough UP-filter of X with respect to B.

Theorem 4.23. Let S be a UP-ideal of X containing a UP-ideal B of X. Then

(1) ∼B−(S) is a UP-ideal of X,

(2) ∼B+(S) is a UP-ideal of X.

Moreover, S is a rough UP-ideal of X with respect to B.

Proof. (1) Let x ∈ (0)∼B
. Then (x, 0) ∈∼B, that is, x = 0 · x ∈ B ⊆ S. Thus

(0)∼B
⊆ S. Hence, 0 ∈ ∼B−(S). Next, let x · (y · z) ∈ ∼B−(S) and y ∈ ∼B−(S).

Then (x · (y · z))∼B
⊆ S and (y)∼B

⊆ S. Thus y ∈ S. We shall show that

x · z ∈ ∼B−(S), that is, (x · z)∼B
⊆ S. Since x · (y · z) ∈ (x · (y · z))∼B

⊆ S and S is

a UP-ideal of X, we have x · z ∈ S. By Lemma 4.11, we have (x · z)∼B
⊆ S. Thus

x · z ∈ ∼B−(S). Hence, ∼B−(S) is a UP-ideal of X.

(2) Since 0 ∈ (0)∼B
and 0 ∈ S, we have 0 ∈ (0)∼B

∩ S 6= ∅. Hence,

0 ∈ ∼B+(S). Next, let x · (y · z) ∈ ∼B+(S) and y ∈ ∼B+(S). Then (x · (y ·

z))∼B
∩ S 6= ∅ and (y)∼B

∩ S 6= ∅. We shall show that x · z ∈ ∼B+(S), that is,

(x · z)∼B
∩ S 6= ∅. Since (x · (y · z))∼B

∩ S 6= ∅ and (y)∼B
∩ S 6= ∅ so we have

s1, s2 ∈ S such that s1 ∈ (x · (y · z))∼B
and s2 ∈ (y)∼B

. Thus (s1, x · (y · z)) ∈∼B

and (s2, y) ∈∼B. so (x · (s2 · z), x · (y · z)) ∈∼B. By transitive, (s1, x · (s2 · z)) ∈∼B.
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Thus (s1)∼B
= (x · (s2 · z))∼B

. Since S is a UP-ideal of X, it follows from Theorem

2.7 (2) that S is a UP-filter of X. By Lemma 4.11, we have (s1)∼B
⊆ S. Thus

(x · (s2 · z))∼B
⊆ S. Since x · (s2 · z) ∈ (x · (s2 · z))∼B

⊆ S and S is a UP-ideal of X,

we have x · z ∈ S. Thus x · z ∈ (x · z)∼B
∩ S 6= ∅, that is, x · z ∈ ∼B+(S). Hence,

∼B+(S) is a UP-ideal of X.

Example 4.24. From Example 4.18, let S = {0, 2, 6}. Then S is not a UP-ideal of

X, But ∼B−(S) = {0, 2} and ∼B+(S) = {0, 2, 3, 6} are UP-ideal of X, that is, S

is both a lower and an upper rough UP-ideal of X with respect to B. Hence, S is

a rough UP-ideal of X with respect to B.

Theorem 4.25. Let S be a subset of X containing a UP-ideal B of X. Then S is a

strongly UP-ideal of X with respect to B if and only if S is a lower rough strongly

UP-ideal of X.

Proof. Let x ∈ (0)∼B
. Then (x, 0) ∈∼B, that is, x = 0 · x ∈ B ⊆ S. Thus

(0)∼B
⊆ S. Hence, 0 ∈ ∼B−(S). Next, let (z ·y)·(z ·x) ∈ ∼B−(S) and y ∈ ∼B−(S).

Then ((z · y) · (z · x))∼B
⊆ S and (y)∼B

⊆ S. Thus y ∈ S. We shall show that

x ∈ ∼B−(S), that is, (x)∼B
⊆ S. Let a ∈ (x)∼B

. Since y ∈ (y)∼B
and z ∈ (z)∼B

,

we have

(z · y) · (z · a) ∈ [(z)∼B
· (y)∼B

] · [(z)∼B
· (x)∼B

]

⊆ (z · y)∼B
· (z · x)∼B

(By Lemma 3.6)

⊆ ((z · y) · (z · x))∼B
(By Lemma 3.6)

⊆ S.

Thus (z · y) · (z · a) ∈ S. Since S is a strongly UP-ideal of X, we have a ∈ S. Thus

(x)∼B
⊆ S. that is, x ∈ ∼B−(S). Hence, ∼B−(S) is a strongly UP-ideal of X. On

the other hand, let S be a lower rough strongly UP-ideal of X. Then ∼B−(S) is a

strongly UP-ideal of X. Thus X = ∼B−(S) ⊆ S ⊆ X. Hence, S = X, it follows

from Theorem 2.7 (3) that S is a strongly UP-ideal of X.

Theorem 4.26. Let S be a strongly UP-ideal of X containing a UP-ideal B of X.

Then ∼B+(S) is a strongly UP-ideal of X, that is, S is an upper rough strongly

UP-ideal of X with respect to B.
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Proof. Since 0 ∈ (0)∼B
and 0 ∈ S, we have 0 ∈ (0)∼B

∩S 6= ∅. Hence, 0 ∈ ∼B+(S).

Next, let (z ·y) · (z ·x) ∈ ∼B+(S) and y ∈ ∼B+(S). Then ((z ·y) · (z ·x))∼B
∩S 6= ∅

and (y)∼B
∩ S 6= ∅. We shall show that x ∈ ∼B+(S), that is, (x)∼B

∩ S 6= ∅.

Since ((z · y) · (z · x))∼B
∩ S 6= ∅ and (y)∼B

∩ S 6= ∅ so we have s1, s2 ∈ S such

that s1 ∈ ((z · y) · (z · x))∼B
and s2 ∈ (y)∼B

. Thus (s1, (z · y) · (z · x)) ∈∼B and

(s2, y) ∈∼B. Then ((z · s2) · (z · x), (z · y) · (z · x)) ∈∼B. By transitive, we have

(s1, (z · s2) · (z · x)) ∈∼B. Thus (s1)∼B
= ((z · s2) · (z · x))∼B

. Since S is a strongly

UP-ideal of X, we have S is a UP-filter of X. By Lemma 4.11, we have (s1)∼B
⊆ S.

Thus ((z · s2) · (z · x))∼B
⊆ S. Since (z · s2) · (z · x) ∈ ((z · s2) · (z · x))∼B

⊆ S and

S is a strongly UP-ideal of X, we have x ∈ S. Thus x ∈ (x)∼B
∩ S 6= ∅. Hence,

x ∈ ∼B+(S). Therefore, ∼B+(S) is a strongly UP-ideal of X.

Example 4.27. From Example 4.18, we have S = {0, 1, 2, 3, 5, 7} is not a strongly

UP-ideal of X but ∼B+(S) = {0, 1, 2, 3, 4, 5, 6, 7} = X, it follows from Theorem 2.7

(3) that ∼B+(S) is a strongly UP-ideal of X, that is, S is an upper rough strongly

UP-ideal of X with respect to B.

By Theorem 4.19, 4.21, 4.23 and 4.25 and Example 4.20, 4.22, and 4.24,

we have that the notion of upper rough UP-subalgebras is a generalization of

UP-subalgebras and rough UP-subalgebras, rough UP-filters is a generalization of

UP-filters, rough UP-ideals is a generalization of UP-ideals, and rough strongly

UP-ideals and strongly UP-ideals coincide. Hence, we have the following relation:

Figure 1: Relation 2
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Conclusions

From the study, we get the main results as the following:

1. Let A and B be nonempty subsets of a UP-algebra X. If ρ is an equivalence

relation on X, then the following statements hold:

(1) ρ−(A) ⊆ A ⊆ ρ+(A),

(2) A ⊆ B implies ρ−(A) ⊆ ρ−(B) and ρ+(A) ⊆ ρ+(B),

(3) ρ−(A ∩B) = ρ−(A) ∩ ρ−(B),

(4) ρ−(A ∪B) ⊇ ρ−(A) ∪ ρ−(B),

(5) ρ+(A ∩B) ⊆ ρ+(A) ∩ ρ+(B),

(6) ρ+(A ∪B) = ρ+(A) ∪ ρ+(B),

(7) ρ−(A′) ⊆ (ρ−(A))′,

(8) (ρ+(A))′ ⊆ ρ+(A′), and

(9) ρ−(A−B) ⊆ ρ−(A)− ρ−(B).

2. If ρ is a congruence relation on X, then (x)ρ · (y)ρ ⊆ (x · y)ρ for all x, y ∈ X.

3. Let A and B be nonempty subsets of X. If ρ is a congruence relation on X,

then ρ+(A) · ρ+(B) ⊆ ρ+(A ·B).

4. Let ρ be a congruence relation on X. If C is a strongly UP-ideal of X, then

C is a rough strongly UP-ideal of X.

5. Every rough strongly UP-ideal of X is a rough UP-ideal.

6. Every rough UP-ideal of X is a rough UP-filter.

7. Every rough UP-filter of X is a rough UP-subalgebra.

8. Let ρ be a congruence relation on X. If S is a UP-filter of X such that

(0)ρ ⊆ S, then (s)ρ ⊆ S for all s ∈ S.
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9. If B and C are UP-ideals of X such that B ⊆ C, then ∼B⊆∼C .

10. Every nonempty subset of X is definable with respect to {0}.

11. Let S be a UP-subalgebra of X containing a UP-ideal B of X. Then ∼B+(S)

is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra of X

with respect to B.

12. Let S be a UP-filter of X containing a UP-ideal B of X. Then

(1) ∼B−(S) is a UP-filter of X,

(2) ∼B+(S) is a UP-filter of X.

Moreover, S is a rough UP-filter of X with respect to B.

13. Let S be a UP-ideal of X containing a UP-ideal B of X. Then

(1) ∼B−(S) is a UP-ideal of X,

(2) ∼B+(S) is a UP-ideal of X.

Moreover, S is a rough UP-ideal of X with respect to B.

14. Let S be a subset of X containing a UP-ideal B of X. Then S is a strongly

UP-ideal of X with respect to B if and only if S is a lower rough strongly

UP-ideal of X.

15. Let S be a strongly UP-ideal of X containing a UP-ideal B of X. Then

∼B+(S) is a strongly UP-ideal of X, that is, S is an upper rough strongly

UP-ideal of X with respect to B.
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Abstract

In this paper, rough set theory is applied to UP-algebras, proved some results and
discussed the generalization of some notions of rough UP-subalgebras, rough UP-filters,
rough UP-ideals and rough strongly UP-ideals. Furthermore, we discuss the relation
between rough UP-subalgebras (resp., rough UP-filters, rough UP-ideals and rough10

strongly UP-ideals) and UP-subalgebras (resp., UP-filters, UP-ideals and strongly UP-
ideals) and present some examples.

Mathematics Subject Classification: 03G25
Keywords: UP-algebra, rough UP-subalgebra, rough UP-filter, rough UP-ideal, rough
strongly UP-ideal15

1 Introduction

Among many algebraic structures, algebras of logic form important class of algebras. Ex-
amples of these are BCK-algebras [6], BCI-algebras [7], BCH-algebras [4], KU-algebras [13],
SU-algebras [9], UP-algebras [5] and others. They are strongly connected with logic. For20

example, BCI-algebras introduced by Iséki [7] in 1966 have connections with BCI-logic be-
ing the BCI-system in combinatory logic which has application in the language of functional
programming. BCK and BCI-algebras are two classes of logical algebras. They were in-
troduced by Imai and Iséki [6, 7] in 1966 and have been extensively investigated by many
researchers. It is known that the class of BCK-algebras is a proper subclass of the class of25

BCI-algebras.
The notion of rough sets was first considered by Pawlak [12] in 1982. After the introduc-

tion of the notion of rough sets, several authors were conducted on the generalizations of the
notion of rough sets and application to many many algebraic structures such as: In 1994,

∗This work was financially supported by the University of Phayao.
†Corresponding author.
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2 T. Klinseesook, S. Bukok and A. Iampan

Biswas and Nanda [1] introduced and discussed the notion of rough groups and rough sub-30

groups. Rough set theory is applied to semigroups and groups by Kuroki [10], and Kuroki
and Mordeson [11] in 1997. In 2002, Jun [8] and Dudek et al. [2] applied rough set theory
to BCK-algebras and BCI-algebras. In 2016, Mao and Zhou [8] applied rough set theory to
pseudo-BCK-algebras.

In this paper, we apply the rough set theory to UP-algebras, introduce the notion of35

upper and lower rough UP-subalgebras (resp., rough UP-filters, rough UP-ideals and rough
strongly UP-ideals) of UP-algebras, and discuss some of their important properties and its
generalizations.

2 Basic Results on UP-Algebras

An algebra X = (X, ·, 0) of type (2, 0) is called a UP-algebra [5] where X is a nonempty set,40

· is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it
satisfies the following axioms: for any x, y, z ∈ X,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,

(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and45

(UP-4) x · y = 0 and y · x = 0 imply x = y.

From [5], we know that the notion of UP-algebras is a generalization of KU-algebras.

Example 2.1. [5] Let X be a universal set. Define two binary operations · and ∗ on the
power set of X by putting A · B = B ∩ A′ and A ∗ B = B ∪ A′ for all A,B ∈ P(X). Then
(P(X), ·, ∅) and (P(X), ∗, X) are UP-algebras and we shall call it the power UP-algebra of50

type 1 and the power UP-algebra of type 2, respectively.

The following is an important property of UP-algebras.

Proposition 2.2. [5] In a UP-algebra X, the following properties hold: for any x, y, z ∈ X,

(1) x · x = 0,

(2) x · y = 0 and y · z = 0 imply x · z = 0,55

(3) x · y = 0 implies (z · x) · (z · y) = 0,

(4) x · y = 0 implies (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,

(6) (y · x) · x = 0 if and only if x = y · x, and

(7) x · (y · y) = 0.60

In what follows, let X denote a UP-algebra unless otherwise specified.

Definition 2.3. [5] A subset S of X is called a UP-subalgebra of X if the constant 0 of X
is in S, and (S, ·, 0) itself forms a UP-algebra.

Iampan [5] proved the useful criteria that a nonempty subset S of a UP-algebra X =
(X, ·, 0) is a UP-subalgebra of X if and only if S is closed under the · multiplication on X.65
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Rough Set Theory applied to UP-Algebras 3

Definition 2.4. [14] A subset F of X is called a UP-filter of X if it satisfies the following
properties:

(1) the constant 0 of X is in F , and

(2) for any x, y ∈ X, x · y ∈ F and x ∈ F imply y ∈ F .

Definition 2.5. [5] A subset B of X is called a UP-ideal of X if it satisfies the following70

properties:

(1) the constant 0 of X is in B, and

(2) for any x, y, z ∈ X, x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.

Definition 2.6. [3] A subset C of X is called a strongly UP-ideal of X if it satisfies the
following properties:75

(1) the constant 0 of X is in C, and

(2) for any x, y, z ∈ X, (z · y) · (z · x) ∈ C and y ∈ C imply x ∈ C.

Theorem 2.7. [3] The following statements hold:

(1) every UP-filter of X is a UP-subalgebra,

(2) every UP-ideal of X is a UP-filter, and80

(3) every strongly UP-ideal of X is a UP-ideal. Moreover, a UP-algebra X is the only one
strongly UP-ideal of itself.

3 Rough UP-Algebras

Definition 3.1. Let X be a set and ρ an equivalence relation on X and let P(X) denote
the power set of X. If x ∈ X, then the ρ-class of x is the set (x)ρ defined as follows:

(x)ρ = {y ∈ X | (x, y) ∈ ρ}.
Define the functions ρ− and ρ+ from P(X) to P(X) putting for every S ∈ P(X),

ρ−(S) = {x ∈ X | (x)ρ ⊆ S},
ρ+(S) = {x ∈ X | (x)ρ ∩ S 6= ∅}.

ρ−(S) is called the lower approximation of S while ρ+(S) is called the upper approximation
of S. The set S is called definable if ρ−(S) = ρ+(S) and rough otherwise. The pair (X, ρ)85

is called an approximation space.

Proposition 3.2. Let A and B be nonempty subsets of a UP-algebra X. If ρ is an equiva-
lence relation on X, then the following statements hold:

(1) ρ−(A) ⊆ A ⊆ ρ+(A),

(2) A ⊆ B implies ρ−(A) ⊆ ρ−(B) and ρ+(A) ⊆ ρ+(B),90

(3) ρ−(A ∩B) = ρ−(A) ∩ ρ−(B),

(4) ρ−(A ∪B) ⊇ ρ−(A) ∪ ρ−(B),

(5) ρ+(A ∩B) ⊆ ρ+(A) ∩ ρ+(B),
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4 T. Klinseesook, S. Bukok and A. Iampan

(6) ρ+(A ∪B) = ρ+(A) ∪ ρ+(B),

(7) ρ−(A′) ⊆ (ρ−(A))′,95

(8) (ρ+(A))′ ⊆ ρ+(A′), and

(9) ρ−(A−B) ⊆ ρ−(A)− ρ−(B).

Proof. (1) Let x ∈ ρ−(A). Then (x)ρ ⊆ A. By reflexivity, (x, x) ∈ ρ so x ∈ (x)ρ. Thus
x ∈ A, that is, ρ−(A) ⊆ A. Let y ∈ A. By reflexivity, (y, y) ∈ ρ so y ∈ (y)ρ. Thus
y ∈ (y)ρ ∩A 6= ∅. So y ∈ ρ+(A), that is, A ⊆ ρ+(A). Therefore, ρ−(A) ⊆ A ⊆ ρ+(A).100

(2) Assume that A ⊆ B. Let x ∈ ρ−(A). Then (x)ρ ⊆ A ⊆ B. Thus x ∈ ρ−(B), that is,
ρ−(A) ⊆ ρ−(B). Let x ∈ ρ+(A). Then (x)ρ ∩A 6= ∅, so there is y ∈ (x)ρ ∩A. Thus y ∈ (x)ρ

and y ∈ A ⊆ B, that is, y ∈ (x)ρ ∩B 6= ∅. Thus x ∈ ρ+(B). Hence, ρ+(A) ⊆ ρ+(B).
(3) By Proposition 3.2 (2), we get ρ−(A∩B) ⊆ ρ−(A) and ρ−(A∩B) ⊆ ρ−(B). Hence,

ρ−(A ∩B) ⊆ ρ−(A) ∩ ρ−(B). On the other hand, let x ∈ ρ−(A) ∩ ρ−(B). Then x ∈ ρ−(A)105

and x ∈ ρ−(B). Thus (x)ρ ⊆ A and (x)ρ ⊆ B. So (x)ρ ⊆ A ∩ B, that is, x ∈ ρ−(A ∩ B).
Therefore, ρ−(A) ∩ ρ−(B) ⊆ ρ−(A ∩B). Hence, ρ−(A) ∩ ρ−(B) = ρ−(A ∩B).

(4) By Proposition 3.2 (2), we get ρ−(A) ⊆ ρ−(A∪B) and ρ−(B) ⊆ ρ−(A∪B). Hence,
ρ−(A) ∪ ρ−(B) ⊆ ρ−(A ∪B).

(5) By Proposition 3.2 (2), we get ρ+(A ∩B) ⊆ ρ+(A) and ρ+(A∩B) ⊆ ρ+(B). Hence,110

ρ+(A ∩B) ⊆ ρ+(A) ∩ ρ+(B).
(6) Let x ∈ ρ+(A ∪ B). Then (x)ρ ∩ (A ∪ B) 6= ∅. Thus ((x)ρ ∩ A) ∪ ((x)ρ ∩ B) 6= ∅,

we have (x)ρ ∩ A 6= ∅ or (x)ρ ∩ B 6= ∅. Hence, x ∈ ρ+(A) or x ∈ ρ+(B). Therefore, x ∈
ρ+(A)∪ρ+(B), that is, ρ+(A∪B) ⊆ ρ+(A)∪ρ+(B). On the other hand, ρ+(A) ⊆ ρ+(A∪B)
and ρ+(B) ⊆ ρ+(A ∪ B) by Proposition 3.2 (2). Hence, ρ+(A) ∪ ρ+(B) ⊆ ρ+(A ∪ B), that115

is, ρ+(A ∪B) = ρ+(A) ∪ ρ+(B).
(7) Let x ∈ ρ−(A′). Then (x)ρ ⊆ A′ and so (x)ρ * A. Thus x /∈ ρ−(A), that is,

x ∈ (ρ−(A))′. Hence, ρ−(A′) ⊆ (ρ−(A))′.
(8) Let x ∈ (ρ+(A))′. Then x /∈ ρ+(A) and so (x)ρ ∩A = ∅. Thus x /∈ A, that is, x ∈ A′.

Therefore, (x)ρ ∩A′ 6= ∅, that is, x ∈ ρ+(A′). Hence, (ρ+(A))′ ⊆ ρ+(A′).120

(9) Now,

ρ−(A−B) = ρ−(A ∩B′)
= ρ−(A) ∩ ρ−(B′) ((3))
⊆ ρ−(A) ∩ (ρ−(B))′ ((7))
= ρ−(A)− ρ−(B).

Hence, ρ−(A−B) ⊆ ρ−(A)− ρ−(B).

Remark 3.3. Let ρ be an equivalence relation on a set X. Then ρ−(X) = X = ρ+(X).

Proof. By Proposition 3.2 (1), we have ρ−(X) ⊆ X ⊆ ρ+(X) and ρ+(X) ⊆ X. Thus
X = ρ+(X). We shall show that X ⊆ ρ−(X). Let x ∈ X. Then (x)ρ ⊆ X. Thus
x ∈ ρ−(X), that is, X ⊆ ρ−(X). Hence, ρ−(X) = X = ρ+(X).125

Definition 3.4. Let ρ be a congruence relation on X. Then the set of all ρ-classes is called
the quotient set of X by ρ, and is denoted by X/ρ. That is,

X/ρ = {(x)ρ | x ∈ X}.
Define a binary operation ∗ on X/ρ by (x)ρ ∗ (y)ρ = (x · y)ρ for all x, y ∈ X. Then
(X/ρ, ∗, (0)ρ) is an algebra of type (2, 0). Indeed, let (x1)ρ = (x2)ρ and (y1)ρ = (y2)ρ. Then
(x1, x2) ∈ ρ and (y1, y2) ∈ ρ, so (x1 · y1, x2 · y2) ∈ ρ because ρ is a congruence relation on
X. Hence, (x1)ρ ∗ (y1)ρ = (x1 · y1)ρ = (x2 · y2)ρ = (x2)ρ ∗ (y2)ρ.
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Definition 3.5. For nonempty subsets A and B of a UP-algebra X = (X, ·, 0), we denote

A ·B = {a · b | a ∈ A and b ∈ B}.

Lemma 3.6. If ρ is a congruence relation on X, then (x)ρ · (y)ρ ⊆ (x · y)ρ for all x, y ∈ X.130

Proof. Let x, y ∈ X and t ∈ (x)ρ · (y)ρ. Then t = a · b for some a ∈ (x)ρ and b ∈ (y)ρ.
Thus (a, x) ∈ ρ and (b, y) ∈ ρ. So (a · b, x · y) ∈ ρ, that is, t = a · b ∈ (x · y)ρ. Therefore,
(x)ρ · (y)ρ ⊆ (x · y)ρ.

Example 3.7. Let X = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0

Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)}135

is a congruence relation on X. Thus

(0)ρ = {0, 1}, (1)ρ = {0, 1}, (2)ρ = {2}, and (3)ρ = {3}.
Since (2 · 2)ρ = (0)ρ = {0, 1} and (2)ρ · (2)ρ = {2} · {2} = {0}, we have (2)ρ · (2)ρ = {0} +
{0, 1} = (2 · 2)ρ.

Proposition 3.8. Let A and B be nonempty subsets of X. If ρ is a congruence relation on140

X, then ρ+(A) · ρ+(B) ⊆ ρ+(A ·B).

Proof. Let t ∈ ρ+(A) · ρ+(B). Then t = x · y for some x ∈ ρ+(A) and y ∈ ρ+(B).
Thus (x)ρ ∩ A 6= ∅ and (y)ρ ∩ B 6= ∅, that is, a ∈ (x)ρ ∩ A and b ∈ (y)ρ ∩ B for some
a, b ∈ X. By Lemma 3.6, we have a · b ∈ (x)ρ · (y)ρ ⊆ (x · y)ρ and a · b ∈ A · B, so
a · b ∈ (x ·y)ρ∩ (A ·B) 6= ∅. Thus (t)ρ∩ (A ·B) = (x ·y)ρ∩ (A ·B) 6= ∅, that is, t ∈ ρ+(A ·B).145

Hence, ρ+(A) · ρ+(B) ⊆ ρ+(A ·B).

Example 3.9. From Example 3.7, let A = {3} and B = {2, 3}. Then A · B = {0, 2},
ρ+(A) = {3} and ρ+(B) = {2, 3}. Thus ρ+(A) · ρ+(B) = {0, 2} + {0, 1, 2} = ρ+(A ·B).

4 Main Results

In the next part, we will research and analysis upper and lower rough UP-subalgebras (resp.,150

rough UP-filters, rough UP-ideals and rough strongly UP-ideals) of UP-algebras, and discuss
some of their important properties and its generalizations.

Definition 4.1. Let S be a nonempty subset of X and ρ an equivalence relation on X.
Then S is called

(1) an upper rough UP-subalgebra of X if ρ+(S) is a UP-subalgebra of X,155

(2) an upper rough UP-filter of X if ρ+(S) is a UP-filter of X,

(3) an upper rough UP-ideal of X if ρ+(S) is a UP-ideal of X,
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(4) an upper rough strongly UP-ideal of X if ρ+(S) is a strongly UP-ideal of X,

(5) a lower rough UP-subalgebra of X if ρ−(S) is a UP-subalgebra of X when ρ−(S) is
nonempty,160

(6) a lower rough UP-filter of X if ρ−(S) is a UP-filter of X when ρ−(S) is nonempty,

(7) a lower rough UP-ideal of X if ρ−(S) is a UP-ideal of X when ρ−(S) is nonempty,

(8) a lower rough strongly UP-ideal of X if ρ−(S) is a strongly UP-ideal of X when ρ−(S)
is nonempty,

(9) a rough UP-subalgebra of X if it is both an upper and a lower rough UP-subalgebra165

of X,

(10) a rough UP-filter of X if it is both an upper and a lower rough UP-filter of X,

(11) a rough UP-ideal of X if it is both an upper and a lower rough UP-ideal of X, and

(12) a rough strongly UP-ideal of X if it is both an upper and a lower rough strongly
UP-ideal of X.170

Example 4.2. Let X = {0, 1, 2, 3, 4} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 2
2 0 1 0 3 1
3 0 1 2 0 4
4 0 0 0 3 0

Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 2), (2, 0), (1, 4), (4, 1)}
is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (3)ρ = {3}, and (1)ρ = (4)ρ = {1, 4}.
We have175

(1) S := {0, 3} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X but ρ−(S) = {3}
is not a UP-ideal (resp., UP-filter and UP-subalgebra) of X. Thus S is not a lower
rough UP-ideal (resp., lower rough UP-filter and lower rough UP-subalgebra) of X.
Hence, S is not a rough UP-ideal (resp., rough UP-filter and rough UP-subalgebra) of
X.180

(2) S := {0, 2, 4} is not a UP-subalgebra (resp., UP-filter and UP-ideal) of X but ρ−(S) =
{0, 2} is a UP-subalgebra (resp., UP-filter and UP-ideal) and ρ+(S) = {0, 1, 2, 4} is a
UP-subalgebra (resp., UP-filter and UP-ideal) of X. Thus S is both a lower and an
upper rough UP-subalgebra (resp., rough UP-filter and rough UP-ideal) of X. Hence,
S is a rough UP-subalgebra (resp., rough UP-filter and rough UP-ideal) of X.185

(3) S := {0, 1} is a UP-ideal (resp., UP-filter and UP-subalgebra) of X. Then ρ−(S) = ∅
and ρ+(S) = {0, 1, 2, 4}. Thus S is both a lower and an upper rough UP-ideal (resp.,
rough UP-filter and rough UP-subalgebra) of X. Hence, S is a rough UP-ideal (resp.,
rough UP-filter and rough UP-subalgebra) of X.
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(4) If ρ = X ×X, then (0)ρ = (1)ρ = (2)ρ = (3)ρ = X. Thus S := {1, 3} is not a UP-ideal190

(resp., UP-filter and UP-subalgebra) of X, and ρ−(S) = ∅ and ρ+(S) = X, that is,
S is both a lower and an upper rough UP-ideal of X. Hence, S is a rough UP-ideal
(resp., rough UP-filter and rough UP-subalgebra) of X.

Theorem 4.3. Let ρ be a congruence relation on X. If C is a strongly UP-ideal of X,
then C is a rough strongly UP-ideal of X.195

Proof. Assume that C is a strongly UP-ideal of X. By Theorem 2.7 (3), we have C = X.
By Remark 3.3, we have ρ−(C) = X = ρ+(C). By Theorem 2.7 (3) again, we have ρ−(C)
and ρ+(C) are strongly UP-ideals of X. Therefore, C is a rough strongly UP-ideal of X.

Example 4.4. From Example 4.2 (4), we have C := {0, 1, 2} is not a strongly UP-ideal
of X. Since ρ−(C) = ∅ and ρ+(C) = X, we have C is both a lower and an upper rough200

strongly UP-ideal of X. Hence, C is a rough strongly UP-ideal of X.

Theorem 4.5. Every rough strongly UP-ideal of X is a rough UP-ideal.

Proof. Let S be a rough strongly UP-ideal of X. Then ρ−(S) (if ρ−(S) is nonempty) and
ρ+(S) are strongly UP-ideals of X. By Theorem 2.7 (3), ρ−(S) (if ρ−(S) is nonempty) and
ρ+(S) are UP-ideals of X. Hence, S is a rough UP-ideal of X.205

Example 4.6. Let X = {0, 1, 2, 3, 4, 5} be a set with a binary operation · defined by the
following Cayley table:

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 2 3 2 5
2 0 1 0 3 1 5
3 0 1 2 0 4 5
4 0 0 0 3 0 5
5 0 0 2 0 2 0

Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 2), (2, 0), (1, 4), (4, 1)}
is a congruence relation on X. Thus

(0)ρ = (2)ρ = {0, 2}, (1)ρ = (4)ρ = {1, 4}, (3)ρ = {3}, and (5)ρ = {5}.
If S = {0, 2, 4}, then ρ−(S) = {0, 2} and ρ+(S) = {0, 1, 2, 4}. Thus ρ−(S) and ρ+(S) are210

UP-ideals of X. Hence, S is a rough UP-ideal of X. Since ρ−(S) 6= X and ρ+(S) 6= X,
it follows from Theorem 2.7 (3) that ρ−(S) and ρ+(S) are not a strongly UP-ideal of X.
Hence, S is a rough UP-ideal of X but is not a rough strongly UP-ideal.

Theorem 4.7. Every rough UP-ideal of X is a rough UP-filter.

Proof. Let S be a rough UP-ideal of X. Then ρ−(S) (if ρ−(S) is nonempty) and ρ+(S) are215

UP-ideals of X. By Theorem 2.7 (2), we have ρ−(S) (if ρ−(S) is nonempty) and ρ+(S) are
UP-filters of X. Hence, S is a rough UP-filter of X.

Example 4.8. Let X = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 1 0 2
3 0 1 0 0
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Then (X, ·, 0) is a UP-algebra. We see that

ρ = {(0, 0), (1, 1), (2, 2), (3, 3)}
is a congruence relation on X. Thus220

(0)ρ = {0}, (1)ρ = {1}, (2)ρ = {2}, and (3)ρ = {3}.
If S = {0, 1}, then ρ−(S) = {0, 1} = ρ+(S). Thus ρ−(S) and ρ+(S) are UP-filters of X but
are not a UP-ideal. Hence, S is a rough UP-filter of X but is not a rough UP-ideal.

Theorem 4.9. Every rough UP-filter of X is a rough UP-subalgebra.

Proof. Let S be a rough UP-filter of X. Then ρ−(S) (if ρ−(S) is nonempty) and ρ+(S) are225

UP-filters of X. By Theorem 2.7 (1), we have ρ−(S) (if ρ−(S) is nonempty) and ρ+(S) are
UP-subalgebras of X. Hence, S is a rough UP-subalgebra of X.

Example 4.10. From Example 4.6, if S = {0, 1, 2, 5}, then ρ−(S) = {0, 2, 5} and ρ+(S) =
{0, 1, 2, 4, 5}. Thus ρ−(S) and ρ+(S) are UP-subalgebras of X but are not a UP-filter.
Hence, S is a rough UP-subalgebra of X but is not a rough UP-filter.230

By Theorem 4.5, 4.7, and 4.9 and Example 4.6, 4.8 and 4.10, we have that the notion of
rough UP-subalgebras is a generalization of rough UP-filters, the notion of rough UP-filters is
a generalization of rough UP-ideals, and the notion of rough UP-ideals is a generalization of
rough strongly UP-ideals. By Example 4.2, the notions of UP-subalgebras (resp., UP-filters
and UP-ideals) and rough UP-subalgebras (resp., rough UP-filters and rough UP-ideals) are235

not identical. Hence, we have the following relation:

Lemma 4.11. Let ρ be a congruence relation on X. If S is a UP-filter of X such that
(0)ρ ⊆ S, then (s)ρ ⊆ S for all s ∈ S.

Proof. Assume that (s)ρ * S for some s ∈ S. Then there is x ∈ (s)ρ but x /∈ S, so
(x, s) ∈ ρ. Since ρ is a congruence relation on X, we have (s · x, 0) = (s · x, s · s) ∈ ρ.240

that is, s · x ∈ (s · x)ρ = (0)ρ ⊆ S. Since S is a UP-filter of X, we have x ∈ S which is a
contradiction. Hence (s)ρ ⊆ S for all s ∈ S.

Definition 4.12. Let B be a UP-ideal of X. Define the binary relation ∼B on X as follows:
for all x, y ∈ X,

x ∼B y if and only if x · y ∈ B and y · x ∈ B. (4.1)

∼B−(S) is called the lower approximation of S by B while ∼B+(S) is called the upper245

approximation of S by B. The set S is called definable with respect to B if ∼B−(S) =
∼B+(S) and rough with respect to B otherwise.
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Iampan [5] proved that ∼B is a congruence relation on X.

Lemma 4.13. If B and C are UP-ideals of X such that B ⊆ C, then ∼B⊆∼C .

Proof. Let (x, y) ∈∼B . Then x · y, y · x ∈ B ⊆ C. Thus (x, y) ∈∼C . Hence ∼B⊆∼C .250

Proposition 4.14. Every nonempty subset of X is definable with respect to {0}.
Proof. Let S be a nonempty subset of X. If a ∈ (x)∼{0} , then (a, x) ∈ {0}. Thus a · x =
0 = x · a. By (UP-4), we have a = x. Thus (x)∼{0} = {x} for all x ∈ X. Now,

∼{0}−(S) = {x ∈ X | (x)∼{0} ⊆ S}
= {x ∈ X | {x} ⊆ S}
= {x ∈ X | x ∈ S}
= S

and

∼{0}+(S) = {x ∈ X | (x)∼{0} ∩ S 6= ∅}
= {x ∈ X | {x} ∩ S 6= ∅}
= {x ∈ X | x ∈ S}
= S.

Hence, ∼{0}−(S) = S = ∼{0}+(S), that is, S is definable with respect to {0}.
Theorem 4.15. [5] Let B be a UP-ideal of X. Then the following statements hold:

(1) the ∼B-class (0)∼B is a UP-ideal and a UP-subalgebra of X which B = (0)∼B ,

(2) a ∼B-class (x)∼B
is a UP-ideal of X if and only if x ∈ B,255

(3) a ∼B-class (x)∼B
is a UP-subalgebra of X if and only if x ∈ B, and

(4) (X/ ∼B , ∗, (0)∼B
) is a UP-algebra under the ∗ multiplication defined by (x)∼B

∗(y)∼B
=

(x·y)∼B for all x, y ∈ X, called the quotient UP-algebra of X induced by the congruence
relation ∼B.

Remark 4.16. If B is a UP-ideal of X, then ∼B−(B) = B = ∼B+(B). that is, B is260

definable with respect to itself.

Proof. Assume that B is a UP-ideal of X. Let x ∈ B. Then x · 0 = 0 ∈ B and 0 · x =
x ∈ B, that is, (x, 0) ∈∼B it follows from Theorem 4.15 that B = (0)∼B = (x)∼B , so x ∈
∼B−(B). Hence, B ⊆ ∼B−(B) ⊆ ∼B+(B). By Proposition 3.2 (1), we have ∼B−(B) ⊆ B
so ∼B−(B) = B. Finally, we shall show that ∼B+(B) ⊆ B. Let x ∈ ∼B+(B). Then265

(x)∼B
∩ B 6= ∅, so there is ax ∈ (x)∼B

and ax ∈ B = (0)∼B
. Thus (x)∼B

= (ax)∼B
=

(0)∼B = B, so x ∈ B. Thus ∼B+(B) ⊆ B. Hence, B = ∼B+(B).

Remark 4.17. Let S be a nonempty subset of X contained in a UP-ideal B of X. Then
∼B+(S) = B and ∼B−(S) = ∅.
Proof. Let x ∈ ∼B+(S). Then (x)∼B ∩ S 6= ∅. Since S ⊂ B, we have (x)∼B ∩ B 6= ∅.270

By Remark 4.16, we have x ∈ ∼B+(B) = B. Thus ∼B+(S) ⊆ B. Next, we shall show
that B ⊆ ∼B+(S). Let x ∈ B. By Theorem 4.15 (1), we have x ∈ B = (0)∼B

. Then
(x)∼B

= (0)∼B
= B, so (x)∼B

∩ B 6= ∅. Thus x ∈ ∼B+(S). Hence, ∼B+(S) = B. Finally,
we shall show that ∼B−(S) = ∅. Let ∼B−(S) 6= ∅. Then there are x ∈ ∼B−(S). Thus
(x)∼B ⊆ S ⊂ B. By Theorem 4.15 (1), we have x ∈ B = (0)∼B . Then (x)∼B = (0)∼B = B275

which is a contradiction. Hence, ∼B−(S) = ∅.
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By Remark 4.17, we can see that S is a rough UP-ideal (resp., rough UP-filter and rough
UP-subalgebra) of X with respect to B.

Example 4.18. Let X = {0, 1, 2, 3, 4, 5, 6, 7} be a set with a binary operation · defined by
the following Cayley table:

· 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 0 0 2 3 2 3 6 7
2 0 1 0 3 1 5 3 7
3 0 1 2 0 4 1 2 7
4 0 0 0 3 0 3 3 7
5 0 0 2 0 2 0 2 7
6 0 1 0 0 1 1 0 7
7 0 0 0 0 0 0 0 0

Then (X, ·, 0) is a UP-algebra. Let B = {0, 2}. Then B is a UP-ideal of X, so ∼B is
a congruence relation on X. Thus (0)∼B

= (2)∼B
= {0, 2}, (1)∼B

= (4)∼B
= {1, 4},280

(3)∼B = (6)∼B = {3, 6}, (5)∼B = {5}, and (7)∼B = {7}. Let S = {0, 1, 2, 3, 4, 5}. Then S is
a UP-subalgebra of X but ∼B−(S) = {0, 1, 2, 4, 5} is not a UP-subalgebra of X. Thus S is
not a lower rough UP-subalgebra of X. Hence, S is not a rough UP-subalgebra of X.

Theorem 4.19. Let S be a UP-subalgebra of X containing a UP-ideal B of X. Then
∼B+(S) is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra of X with285

respect to B.

Proof. By Proposition 3.2 (1), we have S ⊆ ∼B+(S) 6= ∅. Let x, y ∈ ∼B+(S). Then
(x)∼B ∩ S 6= ∅ and (y)∼B ∩ S 6= ∅. Thus there exist ax, ay ∈ S such that ax ∈ (x)∼B

and ay ∈ (y)∼B . By Lemma 3.6, we have ax · ay ∈ (x)∼B · (y)∼B ⊆ (x · y)∼B . Since S
is a UP-subalgebra of X, we have ax · ay ∈ S. Thus ax · ay ∈ (x · y)∼B ∩ S 6= ∅. Hence,290

x · y ∈ ∼B+(S), that is, ∼B+(S) is a UP-subalgebra of X.

Example 4.20. From Example 4.18, we have S = {0, 2, 4} is not a UP-subalgebra of X but
∼B+(S) = {0, 1, 2, 4} is a UP-subalgebra of X, that is, S is an upper rough UP-subalgebra
of X with respect to B.

Theorem 4.21. Let S be a UP-filter of X containing a UP-ideal B of X. Then295

(1) ∼B−(S) is a UP-filter of X,

(2) ∼B+(S) is a UP-filter of X.

Moreover, S is a rough UP-filter of X with respect to B.

Proof. (1) Let x ∈ (0)∼B . Then (x, 0) ∈∼B , that is, x = 0 · x ∈ B ⊆ S. Thus (0)∼B ⊆ S.
Hence 0 ∈ ∼B−(S). Next, let x · y ∈ ∼B−(S) and x ∈ ∼B−(S). Then (x · y)∼B

⊆ S300

and (x)∼B
⊆ S. Thus x ∈ S. We shall show that y ∈ ∼B−(S), that is, (y)∼B

⊆ S. Let
ay ∈ (y)∼B

. Since x ∈ (x)∼B
, it follows from Lemma 3.6 that x · ay ∈ (x)∼B

· (y)∼B
⊆

(x · y)∼B ⊆ S. Thus x · ay ∈ S. Since S is a UP-filter of X, we have ay ∈ S. Thus
(y)∼B ⊆ S, that is, y ∈ ∼B−(S). Hence, ∼B−(S) is a UP-filter of X.

(2) Since 0 ∈ (0)∼B
and 0 ∈ S, we have 0 ∈ (0)∼B

∩ S 6= ∅. Hence, 0 ∈ ∼B+(S). Next,305

let x · y ∈ ∼B+(S) and x ∈ ∼B+(S). Then (x · y)∼B
∩ S 6= ∅ and (x)∼B

∩ S 6= ∅. We shall
show that y ∈ ∼B+(S), that is, (y)∼B

∩ S 6= ∅. Let u, v ∈ S be such that u ∈ (x · y)∼B
and

v ∈ (x)∼B . Thus (u, x · y) ∈∼B and (v, x) ∈∼B , so u · (x · y) ∈ B ⊆ S and v · x ∈ B ⊆ S.
Since u, v ∈ S and S is a UP-filter of X, we have x · y ∈ S and x ∈ S and so y ∈ S. Since
y ∈ (y)∼B , we have y ∈ (y)∼B ∩ S 6= ∅. Thus y ∈ ∼B+(S). Hence, ∼B+(S) is a UP-filter of310

X.
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Example 4.22. From Example 4.18, let S = {0, 2, 3}. Then S is not a UP-filter of X, But
∼B−(S) = {0, 2} and ∼B+(S) = {0, 2, 3, 6} are UP-filter of X, that is, S is both a lower
and an upper rough UP-filter of X with respect to B. Hence, S is a rough UP-filter of X
with respect to B.315

Theorem 4.23. Let S be a UP-ideal of X containing a UP-ideal B of X. Then

(1) ∼B−(S) is a UP-ideal of X,

(2) ∼B+(S) is a UP-ideal of X.

Moreover, S is a rough UP-ideal of X with respect to B.

Proof. (1) Let x ∈ (0)∼B . Then (x, 0) ∈∼B , that is, x = 0 · x ∈ B ⊆ S. Thus (0)∼B ⊆ S.320

Hence, 0 ∈ ∼B−(S). Next, let x · (y ·z) ∈ ∼B−(S) and y ∈ ∼B−(S). Then (x · (y ·z))∼B
⊆ S

and (y)∼B
⊆ S. Thus y ∈ S. We shall show that x · z ∈ ∼B−(S), that is, (x · z)∼B

⊆ S.
Since x · (y · z) ∈ (x · (y · z))∼B

⊆ S and S is a UP-ideal of X, we have x · z ∈ S. By Lemma
4.11, we have (x · z)∼B

⊆ S. Thus x · z ∈ ∼B−(S). Hence, ∼B−(S) is a UP-ideal of X.
(2) Since 0 ∈ (0)∼B

and 0 ∈ S, we have 0 ∈ (0)∼B
∩ S 6= ∅. Hence, 0 ∈ ∼B+(S). Next,325

let x · (y · z) ∈ ∼B+(S) and y ∈ ∼B+(S). Then (x · (y · z))∼B
∩ S 6= ∅ and (y)∼B

∩ S 6= ∅.
We shall show that x · z ∈ ∼B+(S), that is, (x · z)∼B ∩ S 6= ∅. Since (x · (y · z))∼B ∩ S 6= ∅
and (y)∼B ∩ S 6= ∅ so we have s1, s2 ∈ S such that s1 ∈ (x · (y · z))∼B and s2 ∈ (y)∼B .
Thus (s1, x · (y · z)) ∈∼B and (s2, y) ∈∼B . so (x · (s2 · z), x · (y · z)) ∈∼B . By transitive,
(s1, x · (s2 · z)) ∈∼B . Thus (s1)∼B

= (x · (s2 · z))∼B
. Since S is a UP-ideal of X, it follows330

from Theorem 2.7 (2) that S is a UP-filter of X. By Lemma 4.11, we have (s1)∼B
⊆ S.

Thus (x · (s2 · z))∼B ⊆ S. Since x · (s2 · z) ∈ (x · (s2 · z))∼B ⊆ S and S is a UP-ideal of X,
we have x · z ∈ S. Thus x · z ∈ (x · z)∼B ∩ S 6= ∅, that is, x · z ∈ ∼B+(S). Hence, ∼B+(S)
is a UP-ideal of X.

Example 4.24. From Example 4.18, let S = {0, 2, 6}. Then S is not a UP-ideal of X, But335

∼B−(S) = {0, 2} and ∼B+(S) = {0, 2, 3, 6} are UP-ideal of X, that is, S is both a lower
and an upper rough UP-ideal of X with respect to B. Hence, S is a rough UP-ideal of X
with respect to B.

Theorem 4.25. Let S be a subset of X containing a UP-ideal B of X. Then S is a strongly
UP-ideal of X with respect to B if and only if S is a lower rough strongly UP-ideal of X.340

Proof. Let x ∈ (0)∼B . Then (x, 0) ∈∼B , that is, x = 0 ·x ∈ B ⊆ S. Thus (0)∼B ⊆ S. Hence,
0 ∈ ∼B−(S). Next, let (z ·y) ·(z ·x) ∈ ∼B−(S) and y ∈ ∼B−(S). Then ((z ·y) ·(z ·x))∼B ⊆ S
and (y)∼B

⊆ S. Thus y ∈ S. We shall show that x ∈ ∼B−(S), that is, (x)∼B
⊆ S. Let

a ∈ (x)∼B
. Since y ∈ (y)∼B

and z ∈ (z)∼B
, we have

(z · y) · (z · a) ∈ [(z)∼B · (y)∼B ] · [(z)∼B · (x)∼B ]
⊆ (z · y)∼B · (z · x)∼B

(By Lemma 3.6)
⊆ ((z · y) · (z · x))∼B (By Lemma 3.6)
⊆ S.

Thus (z ·y) ·(z ·a) ∈ S. Since S is a strongly UP-ideal of X, we have a ∈ S. Thus (x)∼B
⊆ S.

that is, x ∈ ∼B−(S). Hence, ∼B−(S) is a strongly UP-ideal of X. On the other hand, let S
be a lower rough strongly UP-ideal of X. Then ∼B−(S) is a strongly UP-ideal of X. Thus
X = ∼B−(S) ⊆ S ⊆ X. Hence, S = X, it follows from Theorem 2.7 (3) that S is a strongly
UP-ideal of X.345
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Theorem 4.26. Let S be a strongly UP-ideal of X containing a UP-ideal B of X. Then
∼B+(S) is a strongly UP-ideal of X, that is, S is an upper rough strongly UP-ideal of X
with respect to B.

Proof. Since 0 ∈ (0)∼B
and 0 ∈ S, we have 0 ∈ (0)∼B

∩S 6= ∅. Hence, 0 ∈ ∼B+(S). Next, let
(z ·y) ·(z ·x) ∈ ∼B+(S) and y ∈ ∼B+(S). Then ((z ·y) ·(z ·x))∼B

∩S 6= ∅ and (y)∼B
∩S 6= ∅.350

We shall show that x ∈ ∼B+(S), that is, (x)∼B
∩ S 6= ∅. Since ((z · y) · (z · x))∼B

∩ S 6= ∅
and (y)∼B

∩ S 6= ∅ so we have s1, s2 ∈ S such that s1 ∈ ((z · y) · (z · x))∼B
and s2 ∈ (y)∼B

.
Thus (s1, (z · y) · (z ·x)) ∈∼B and (s2, y) ∈∼B . Then ((z · s2) · (z ·x), (z · y) · (z ·x)) ∈∼B . By
transitive, we have (s1, (z · s2) · (z ·x)) ∈∼B . Thus (s1)∼B

= ((z · s2) · (z ·x))∼B
. Since S is a

strongly UP-ideal of X, we have S is a UP-filter of X. By Lemma 4.11, we have (s1)∼B
⊆ S.355

Thus ((z · s2) · (z · x))∼B
⊆ S. Since (z · s2) · (z · x) ∈ ((z · s2) · (z · x))∼B

⊆ S and S is
a strongly UP-ideal of X, we have x ∈ S. Thus x ∈ (x)∼B ∩ S 6= ∅. Hence, x ∈ ∼B+(S).
Therefore, ∼B+(S) is a strongly UP-ideal of X.

Example 4.27. From Example 4.18, we have S = {0, 1, 2, 3, 5, 7} is not a strongly UP-ideal
of X but ∼B+(S) = {0, 1, 2, 3, 4, 5, 6, 7} = X, it follows from Theorem 2.7 (3) that ∼B+(S)360

is a strongly UP-ideal of X, that is, S is an upper rough strongly UP-ideal of X with respect
to B.

By Theorem 4.19, 4.21, 4.23 and 4.25 and Example 4.20, 4.22, and 4.24, we have that
the notion of upper rough UP-subalgebras is a generalization of UP-subalgebras and rough
UP-subalgebras, rough UP-filters is a generalization of UP-filters, rough UP-ideals is a365

generalization of UP-ideals, and rough strongly UP-ideals and strongly UP-ideals coincide.
Hence, we have the following relation:
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