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ABSTRACT

In this research, we introduce a projection type iterative scheme of mixed type
for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive
nonself-mappings in uniformly convex Banach spaces. Weak and Strong convergence

theorems are established in uniformly convex Banach spaces.
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CHAPTER 1
Introduction

Let K be a nonempty closed convex subset of a real normed linear space F.
A self-mapping T : K — K is said to be nonexpansive if | Tz — Ty|| < ||z — y|| for
all z,y € K. A self-mapping T : K — K is called asymptotically nonexpansive if

there exists a sequence {k,} C [1,00), k, — 1 as n — oo such that

1Tz =Ty < kallz = yll (L.1)
forall z,y € K and n > 1.
A mapping 7" : K — K is said to be uniformly L-Lipschitzian if there exists

a constant L > 0 such that

7"z = Ty|| < Lilz -y (1.2)
for all z,y € K and n > 1.

It is easy to see that if 7" is an asymptotically nonexpansive, then it is
uniformly L-Lipschitzian with the uniform Lipschitz constant L = sup{k, : n > 1}.

Fixed-point iteration process for nonexpansive self-mappings including
Mann and Ishikawa iteration processes have been studied extensively by various
authors [1, 9, 11, 16, 17, 22]. For nonexpansive nonself-mappings, some authors [10,
14, 25, 27, 32] have studied the strong and weak convergence theorems in Hilbert
space or uniformly convex Banach space. In 2972, Goebel and Kirk [4] introduced
the class of asymptotically nonexpansive self-mappings, who proved that if K is
nonempty closed convex subset of real uniformly convex Banach space and 7' is an
asymptotically nonexpansive self-mapping on C, then 7" has a fixed point.

In 1991, Schu [23] introduced a modified Mann iteration process to approx-
imate fixed points of asymptotically nonexpansive self-mappings in Hilbret space.

More precisely, he proved the following theorem.



Theorem 1.1 (see [23]). Let H be a Hilbert space, and let K be a nonempty
closed convex and bounded subset of . Let 7' : K — K be an asymptotically
nonexpansive mapping with sequence {k,} C [1,00) for all n > 1, lim, ook, = 1
and > 7 (k2 — 1) < oo. Let {a,} be a sequence in [0.1] satisfying the condition
0 <a<a <b<1ln >1, for some constant a,b. Then the sequence {z,}

generated from an arbitrary z; € K by the relation

Tor1 = (1 — ap)xy + a0, Ty, n>1, (1.3)
converges strongly to some fixed point of 7.

Since then, Schu’s iteration process has been widely used to approximate
fixed points of asymptotically nonexpansive self-mappings in Hilbert or Banach
spaces (see [16],[20],[21],[23],[28]).

The concept of asymptotically nonexpansive nonself-mappings was introduced
by Chidume, Ofoedu, and Zegeye [2] in 2003 as the generlization of asymptotically
nonexpansive self-mappings. The nonself of asymptotically nonexpansive nonself-

mapping is defined as follows.

Definition 1.2 (see [2]). Let K be a nonempty subset of a real normed linear space
E. Let P: FF — K be a nonexpansive retraction of £ onto K. A nonself-mapping
T : K — FE is said to be asymptotically nonexpansive if there exists a sequence

{k,} C[1,00) , k, — 1 as n — oo such that

IT(PT)* 2 = T(PT)} 'yl < kallz — | (1.4)
for all z,y € K and n > 1. A non-self-mapping 7' is said to be uniformly

L — Lipschitzian if there exists a constant L > 0 such that

IT(PT)* 2 — T(PT)} 'yl < Lilz —y| (1.5)
for all x,y € K and n > 1.
We denote by (PT)° the identity map from K onto itself. In [2], the authors

studied the following iterative sequence: x; € K,



Tp1 = P((1 = ay)zn + @, T(PT)" txy,), (1.6)

to approximate some fixed point of 7" under suitable conditions.
If T" is a self-mapping, then P becomes the identity mapping so that (1.4)
and (1.5) reduce to (1.1) and (1.2), respectively, and (1.6) reduces to (1.3).

In 2006, Wang[31] generalized the iteration process (1.8) as follows: x; € K,

Yn = P((l - ﬁn)xn + ﬁnT2(PT2)nill’n)’
Tpi1 = P((1—ap)z, +a, T (PTY)" ty,), n > 1, (1.7)

where T1,T» : K — E are asymptotically nonexpansive nonself-mappings and {a,,}
and {f,} are real sequences in [0,1). He proved strong and weak convergence of
the sequence {«,} defined by (1.7) to a common fixed point of 77 and T, under
appropriate conditions. Meanwhile, the results of [31] generalized the results of [2].

In 2009, a new iterative scheme which is called the projection type Ishikawa
iteration for two asymptotically nonexpansive nonself-mappings was defined and con-

structed by Thianwan [30]. It is given as follows:

Yo = P((1 — Bp)z, + B, To(PTy)" ),

Tpi1 = P((1—an)yn +a,T1(PTY)" y,), n > 1, (1.8)
where {a,,} and {f3,} are appropriate real sequences in [0,1). He studied the scheme
for two asymptotically nonexpansive nonself-mappings and proved strong and weak
convergence of the sequences {z, } and {y,} to a common fixed point of 7}, 75 under
suitable conditions in a uniformly convex Banach space.

Note that Thianwan process (1.8) and Wang process (1.7) are independent
neither reduces to the other.

If T' =15 and (3, = 0 for all n > 1, then (1.8) reduces to (1.6). It also can

be reduces to Schu process (1.3).



Recently, Guo, Cho and Guo [7] studied the following iteration scheme:
T € K,

Yo = P((1 = 8,)S32n + B, To(PT2)" '2y),

Ty = P(1—apn)Sta, +a, Ty (PTY) ™ Yy,), n > 1, (1.9

where S1,5; : K — K are asymptotically nonexpansive self-mappings, 77,75 :
K — E are asymptotically nonexpansive nonself-mappings and {«,}, {3,} are two
sequences in [0,1). They studied the strong and weak convergence of the iterative
scheme (1.9) under proper conditions.

If S; and S, are the identity mappings, then the iterative scheme (1.9) re-
duces to the scheme (1.7).

Motivated by these recent works, we introduce and study a new iterative
scheme in this paper. The scheme is defind as follows.

Let £ be a real Banach space, K be a nonempty closed convex subset of F
and P : ¥ — K be a nonexpansive retraction of £ onto K. Let S;,S5; : K — K be
two asymptotically nonexpansive self-mappings and 77,75 : K — E be two asymp-
totically nonexpansive nonself-mappings. Then, we define the new iteration scheme

of mixed type as follows : z; € K,

Yo = P((1 = B,)S5x, + B To(PT)" '2y),
Tpi1 = P((1—ay) STy +a, Ty (PT)" Yy,,), n>1, (1.10)

where {a,,}, {3,} are two sequences [0,1).

The iterative scheme (1.10) is called the projective type iterative process for
mixed type of asymptotically nonexpansive mappings. If S; and S, are the identity
mappings, then the iterative scheme (1.10) reduces to (1.8).

Note that (1.9) and (1.10) are independent neither reduces to the other.

The purpose of this paper is to construct an iteration scheme for approxi-
mating common fixed points of two asymptotically nonexpansive self-mappings and
two asymptotically nonexpansive nonself-mappings and to prove some strong and weak

convergence theorems for such mappings in a real uniformly convex Banach space.



CHAPTER 2
Preliminaries

We denote the set of common fixed points of Sy, 53,77 and T, by F =
F(S1)NF(S2) N F(Ty) N F(T,) and denote the distance between a point z and a set
Ain E by d(z,A) = infeea ||z — ]|

Now, we recall some well-known concepts and results.

Let E be a real Banach space, E* be the dual space of £ and J : & — 2F°

be the normalized duality mapping defined by

J(@) ={f € E*: (z, f) = [=lAI [1] = lll[}

for all z € E, where (-,-) denotes duality pairing between E and E*. A single-
valued normalized duality mapping is denoted by j.

A subset K of a real Banach space E is called a retract of E [2] if there
exists a continuous mapping P : £ — K such that Pz = z for all x € K. Every
closed convex subset of a uniformly convex Banach space is a retract. A mapping
P : E — FE is called a retraction if P> = P. It follows that if a mapping P is a
retraction, than Py = y for all y in the range of P.

Recall that a Banach space FE is said to satisfy Opial’s condition [15] if
x, — x weakly as n — oo and x # y implying that

limsup ||z, — z|| < limsup ||z, — y]|.

A mapping 7' : K — E is said to be semi-compact if, for any sequence
{z,} in K such that ||z, — Tz,|| — 0 as n — oo, there exists a subsequence {z,,}
of {z,} such that {x, } converges strongly to z* € K.

A Banach space E is said to have a F'rechet differentiable norm [17] if, for
alzveUU={ze€E:|z| =1},

et gl e
t—0 t
exists and is attained uniformly in y € U.




A Banach space F is said to have the Kadec-Klee property [5] if for every

sequence {z,} in E, z,, — x weakly and ||z, || — ||=||, if follows that z,, — x strongly.
In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 [26] Let {a,},{b,} and {c,} be three nonnegative sequences sat-

isfying the following condition:
An41 S (1 + bn)an + Cn

for each n > ng, where ny is some nonnegative integer, ZZO:”O b, < oo and

Z;’O:no ¢y < 00. Then lim,,_a, €xists.
Lemma 2.2 [23] Let E be a real uniformly convex Banach space and 0 < p <
tn < q <1 for each n > 1. Also, suppose that {x,} and {y,} are two sequences

of such that

limsup ||z,]] <7, limsup |yl <7, lim |[[t,z, + (1 —t)y.] =7

n—oo n—oo

hold for some r > 0. Then lim,, .||y — yn|| = 0.

Lemma 2.3 [2] Let E be a real uniformly convex Banach space, K be a nonempty
closed convex subset of ¥ and T : K — E be an asymptotically nonexpansive
mapping with a sequence {k,} C [1,00) and k, — 1 as n — oco. Then [ — T
is demiclosed at zero, i.e., if x, — x weakly and x, — Tx, — 0 strongly, then

x € F(T), where F(T) is the set of fixed points of T.

Lemma 2.4 [3] Let E be a uniformly convex Banach space and K be a con-
vex subset of E. Then there exists a strictly increasing continuous convex function
v :[0,00) — [0,00) with v(0) = 0 such that, for each mapping S : K — K with a

Lipschitz constant L > 0,



lon + (1 = a)Sy — S(az + (1 = a)y)|| < Ly'(lv — yll — £[[Sz — Syl|)
forall z,y € K and 0 < o < 1.
Lemma 2.5 [3] Let E be a uniformly convex Banach space such that its dual

space E* has the Kadec-Klee property. Suppose {x,} is a bounded sequence and
f1, f2 € Wo({x,}) such that

nh_}ngo oz, + (1 —a)fi — fa|

exists for all o € [0, 1], where W, ({z,}) denotes the set of all weak subsequen-

tial limits of {z,,}. Then f; = fo.



CHAPTER 3
Main Results

In this chapter, we prove theorems of strong and weak convergence of the
iterative scheme given in (1.10) to a common fixed point of mixed type of two asymp-
totically nonexpansive self-mappings and two asymptotically nonexpansive nonself-
mappings in uniformly convex Banach spaces.

In order to prove our main results, the following lemmas are needed.
Lemma 3.1 Let £ be a real uniformly convex Banach space and A a nonempty closed
convex nonexpansive retract of £/ with P as a nonexpansive retraction. Let 57, So
: K — K be two asymptotically nonexpansive self-mappings with{k:,(ll)}, {ka(?)} C
[1,00) and Ty, T» : K — E be two asymptotically nonexpansive nonself-mappings
with {I7}, {1} C [1, 00) such that 3°°° (kY — 1) < 0o and °°° (I — 1) < o0
for i = 1, 2, respectively and F' = F'(S1) N F(S2) N F(Ty) N F(Ty) # (). Suppose that
{a,} and {f,} are real sequences in [0,1). From an arbitrary z; € K, define the
sequence {x,} using (1.10) Then

(@) nlLIEo ||zn — ¢l| exists for any g € F;

(2) lim d(z,, F) exists.

Proof Let ¢ € F. Setting h, = max{k;,(ll), k:g), lﬁll), 19}. Using (1.10), we

have

lyn —all = [IP((1 = B) Sz + BuTo(PT2)" @) — g
= [|P((1 = Ba)S32n + B To(PT)" ' w) — Plq)|
< (1= Ba)(Sy@n — ) + Bu(To(PT2)" 20 — q) |
< (1= Bn)hnllzn = qll + Bulnllzn — g
= hnllen =4, (3.1)

A



and so

lznes —all = I1P((1 = @) STy + a1 (PT1)" ) — g

IP((1 = ) STy + an Ty(PT)"ya) — P(g)|

< (1= ) (ST — @) + (T (PTY)" g — g

< (= an)hnllyn — qll + anhally. — 4l

= hullyn — 4|l

< hpllzn =4l

= (14 (hy = )llzn — gl (3.2)

Since 32 (k{ — 1) < 0o and 32 (I — 1) < oo for i = 1,2, we have

>0 (h2 —1) < co. It follows from Lemma 2.1 that lim ||z, — ¢| exists.
(2) Taking the infimum over all ¢ € F' in (3.2), we have
d(@nir, F) < (1+ (b3 = 1))d(an, F)

for each n > 1. It follows from > >° (h? — 1) < oo and Lemma 2.1 that the

conclusion (2) holds. This completes the proof.

Lemma 3.2 Let E be a real uniformly convex Banach space and K a nonempty
closed convex nonexpansive retract of £/ with P as a nonexpansive retraction. Let
Sy, S, : K — K be two asymptotically nonexpansive self-mappings with {k"}, {k{P} C
[1,00) and T1,T, : K — E be two asymptotically nonexpansive nonself-mappings
with {10}, {12} € [1,00) such that S°° (kY — 1) < oo and 320 (I — 1) < o0
for i = 1,2, respectively and F' = F(S1) N F(Sy) N F(T1) N F(Ty) # (). Suppose that
{a,,} and {3,} are real sequences in [e, 1 — €] for some € € (0, 1). From an arbitrary
x1 € K, define the sequence {x,} using (1.10). If ||z — Ty|| < ||S;x — T;y|| for all

xz,y € K and i = 1,2, then lim ||z, — S;z,|| = lim |z, — T;x,|| =0 for i = 1,2.
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Proof Suppose that ||z —Ty|| < ||S;x—Tyl|| forall z,y € K and i = 1,2. Let ¢ € F.
Set h,, = max{kg), kD1, lﬁf)}. By Lemma 3.1, we are that lim,, .||z, —q|| exist-
5. Assume that lim lzn,—ql|| = c. Since >_°7 (k2 —1) < oo and Tim. |Zni1—qll = ¢,

letting n — oo in the inequality (3.2), we have

lim |[(1 = @) (S7Yn — @) + o TH(PTY)" 'y, — q)|| = c. (3.3)

n—o0

In addition, || STy, — ¢q| < kry(ll)Hyn — ¢||, taking the lim sup on both sides in this

inequality, we have

limsup [[S7'y, —ql| < e (3.4)

n—oo

Taking the lim sup on both sides in the inequality (3.1), we obtain lim sup ||y, —¢|| <

¢, and so o

lim sup | T3(PT1)" "y — Il < lim sup g —aqll <c. (3.5)
By using (3.3), (3.4), (3.5) and Lemma 2.2, we have

Tim [ SPy, — Ty (PTh)" gl = 0. (3.6)
Since

lyn=T1(PT2)" yull < 157 yn=T2(PT2)" |- (3.7)

Letting n — oo in the inequality (3.7), by (3.6), we have

Ty, — Ty (PTh)" 'yl = 0. (3.8)
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From (3.2), we have

[Zns1 —all < hallyn — qll < B2|lyn — ql|- (3.9)

Taking the lim inf on both sidies in the inequality (3.9), we have
liminf ||y, —q|| > ¢ (3.10)

Since limsup ||y, — q|| < ¢, by (3.10), we have lim ||y, — ¢|| = ¢. This implies

that T

¢ =lim [y, —gl| < lim [(1 = 5,)(S32n —q) + Bu(To(PTo)" = q)|

< lim flro — gl =

and so

Jim [|(1 = B.) (S50 = @) + Bu(B(PT)" wn = q)| = c. (3.11)
In addition, we have

lim sup | Sz — ql| < limsup k2 |z, — g} = ¢ (3.12)
and

lim sup I To(PT)" =gl < limm sup 1|z —qll = c. (3.13)

It follows from (3.11), (3.12), (3.13) and Lemma 2.2 that

lim ||Syx, — To(PTy)" ,| = 0. (3.14)

n—oo
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Now, we prove that

lim ||z, — Tiz,| = lim ||z, — Thx,| = 0.
Indeed, since ||z, — To(PTy)" 'z,|| < ||SYz, — To(PTy)" 'z, |. (3.15)

Using (3.14) and (3.15), we have

lim ||z, — To(PTy)" ‘2, = 0. (3.16)

n—oo
Since Syx, = P(SYx,) and P : E — K is nonexpansive rectraction of F onto K,
we have

[y = Szall < (1= Ba)(Syn — Sywn) + Bu(To(PT2)" w0 — Sy,) |
< Bl To(PT)" oy — Sy

Using (3.14), we have

lim ||y, — S3z,| = 0. (3.17)

Furthermore, we have
Y0 = @all < llyn — S5zl + 1S5z — To(PT2)" 2y ||
|| To(PT)" Lz, — x| (3.18)

It follows from (3.14), (3.16), (3.17) and (3.18) that

lim ||z, — ya|| = 0. (3.19)
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Since
|20 — Ty (PTy)" || < |[STan — Ti(PTY)" |
and

1572, — T1(PT)" | < [|ST 20 — SPynll + 157 yn — T1(PT1)" yal
T (PTY)™  yp — Ty (PTY)™ |
= k82— ynll + 1579 + To(PT)"
[y — 2| (3.20)

Using (3.6), (3.19) and (3.20), we have

lim ||S}z, — T (PTy)" x,| =0, (3.21)
and so
lim ||z, — Ty (PT)" ‘2, = 0. (3.22)

In addition,

lzns1 = STyall = [1P((1 = ) STy + anTi(PTI)" ' yn) = P(STyn)|

< (1= an)llSTyn = Styall + e ITU(PTY)" g — STyl
Thus, it follows from (3.6) that
T [ = Sl = 0. (323)
In addition,

lzns1 = To(PT)"  yall < llznry = STyall + 1157y — T (PTY)" yall.
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By using (3.6) and (3.23), we have
Tim |z — Ty (PT)" y,| = 0. (3.24)
It follows from (3.21) and (3.22) that

ST 20 = zall = [ST2 — TU(PTY)" 'y + Th(PT)" o, —
< ||Sta, — Ty(PT)™ Yoy || + | TV (PTY)" 2, — 2| (3.25)

— 0 (as n — 00).
In addition,

ISt @, — TQ(PTQ)"’lan = ||STx, —xp + 2, — TQ(PTZ)”’lan

IN

18720 = @l + |0 — To(PT2)" " wnll.
Thus, it follows from (3.16) and (3.25) that

lim || Sy, — Ty (PTy)" x| = 0. (3.26)
In addition,

157y — To(PT2)" anll = [[STyn — STan + Sta, — To(PTy)" ||
< ”S?yn - S?xn” + ”S?xn - T2(PT2)R_1xn||

< kDllyn = all + 15720 — To(PTo)" .

By using (3.19) and (3.26), we have

lim ||S}y, — To(PTy)" z,| = 0. (3.27)
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It follows from (3.23) and (3.27) that

”xn-&-l - T2<PT2>n_1yn|| = Hxn-i-l — STYn + S1Yn — T2(PT2)n_1xn”
= | @ns1 = STUnll + 157y — To(PT2)" |

— 0 (as n — 00). (3.28)

Again, since (PT;)(PT;)" *y,_1,2, € K for i = 1,2 and T}, T, are two asymp-

totically nonexpansive nonself-mappings, we have

IT(PT)" Yot — Ty = | T((PT)(PT)" 2y, 1) — Ti(Pa,)||
max{I{"), I} |(PT) (PT:)" Y1 — P,

IA

< max{l{", [P T(PT)" 2ypoy — 2l (3.29)

Using (3.24) , (3.28) and (3.29), for © = 1,2, we have

Tim | T,(PT)" Yoy — Tia|| = 0. (3.30)
Moreover, we have
Jns1 = gl < lomsr = TP gall + 1T (PT)™ g = gl
Using (3.8) and (3.24), we have
T 11 = yill =0 (331)
In addition, for ¢ = 1, 2, we have

lzn = Tian|l < llen = T(PT)" anll + | Ti(PT)" ™ 2 — T(PT)" |
HIT(PT)" ™ Y1 — Tin|
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< len = T(PT)" o] + maz{sup I, sup L2} |20 — Yol
n>1 n>1

HIT(PT)" Yo — Tizal-
Thus, it follows from (3.16), (3.22), (3.30) and (3.31) that

lim ||z, — Thz,|| = lim ||z, — Tha,| = 0.
n—oo n—oo

Finally, we prove that
lim ||z, — Siz,|| = lim ||z, — Syz,|| = 0.
n—oo n—oo

In fact, for ¢+ = 1, 2, we have

Hxn - Szxn” < ”In - TZ(PTz)n_lan + ||Szxn

N

120 = T(PT)" 2l + || ST

Thus, it follows from (3.16), (3.21), (3.22) and (3.26) that

lim ||z, — Siz,|| = nlgrolo |z, — Saxy|| = 0.

n—oo

The proof is completed.

— T(PT)" |

~ T(PT)" |

Now, we find two mapping, S; = Sy = S and T} = Ty, = T, satisfying

the condition ||z — Ty|| < ||S;z, — Tyy|| for all z,y € K and i = 1,2 in Lemma 3.2

as follows.

Example 3.1[13] Let R be the real line with the usual norm |- | and let K = [—1,1].

Define two mappings S,7T : K — K by

—2sinZ

5, if x €[0,1],

2sing, if x € [-1,0)

Tx
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and

z, ifzel0,1]
Sx =
—z, ifxe[-1,0).

Now, we show that 7" is nonexpansive. In fact, if z,y € [0,1] or z,y € [—1,0), than
we have

Tz — Ty| = 2|sin § —sin 4| < [z —yl.

If z €[0,1] and y € [-1,0) or z € [—1,0) and y € [0, 1], then we have

T —Ty| = 2|sinZ —sin
|Tx — Ty |s11r12 sm2|
= 4|sinx+ycosx_y|
4 4
< Jz 4y
< Jr—yl

This implies that 7" is nonexpansive, and so 7' is an asymptotically nonexpansive map-
ping with k, = 1 for each n > 1. Similarly, we can show that S is an asymptotically
nonexpansive mapping with [,, = 1 for each n > 1.
Next, we consider the following cases:
Case 1. Let 2,y € [0,1]. Then we have
|z — Ty| = |z +2sin §| = |Sz — Ty|.
Case 2. Let z,y € [-1,0). Then we have
v —Ty| = |v —2sinf| < | — 2 —2sin §| =[Sz — Ty|.
Case 3. Let z € [—1,0) and y € [0,1]. Then we have
|z —Ty| = |v +2sinf| < | -z +2sin§| = |Sz —Ty|.
Case 4. Let z € [0,1] and y € [—1,0]. Then we have

|z —Ty| = |v —2sin¥| =[Sz — Ty|.

Theorem 3.1 Under the assumptions of Lemma 3.2, if one of Sy,S55,77 and 75 is
completely continuous, then the sequence {z,} defined by (1.10) converges strongly

to a common fixed point of Sy, Sy, 77 and T5.
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Proof Without loss of generality, we can assume that S; is completely continuous.
Since {x,} is bounded by Lemma 3.1, there exists a subsequence {Sx,,} of {S17,}

such that {Sx,,} converges strongly to some ¢*. Moreover, we know that

lim |z, — Sizy,,|| = lim |z, — Seay,[| =0
J—00 Jj—00

and
lim ||z, — Tz, || = lim |[z,, — Tox,,| =0
j—o0 j—o0

by Lemma 3.2, which imply that

[0, = ¢*ll < [l2n, = Sin, || + [1S120; = 7| = 0

as j — oo, and so w,, — ¢ € K. Thus, by the continuity of S5, S5,,7) and

T5, we have

lg* = Sl = lim [|2n; = Sita, || = 0
and
lg" = Tig"ll = Jim [|#n; — Tiwn, || = 0

for i = 1,2. Thus it follows that ¢* € F(S) N F(S2) N F(T1) N F(Ty). Fur-
thermore, since lim ||z, — ¢|| exists by Lemma 3.1, we have lim ||z, — ¢"|| = 0.

This completes the proof.

Theorem 3.2 Under the assumptions of Lemma 3.2, if one of S, S5, 77 and T5
is semi-compact, then the sequence {x,} defined by (1.10) converges strongly to a

common fixed point of S, S, T} and T5.

Proof  Since lim |z, — S;z,|| = lim ||z, — Tyxz,|| = 0 for ¢ = 1,2 by Lemma
3.2 and one of S7,S55,77 and T5 is semi-compact, there exists a subsequence {xnj}

of {x,} such that {x, } converges strongly to some ¢* € K. Moreover,
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by the continuity of Sy, S5, 71 and T3, we have ||¢* — S;¢*|| = lim ||z, — Sz, || = 0
j—o0
and ||¢* — Ti¢*|| = lim ||2,, — Tizy,,|| = 0 for i@ = 1,2. Thus it follows that
j—o0
¢ € F(S1)NF(Se)NF(Ty)NF(Tz). Since lim ||z, — ¢"| exists by Lemma 3.1, we

have lim ||z, — ¢*|| = 0. This completes the proof.

Theorem 3.3 Under the assumptions of Lemma 3.2, if there exists a nondecreas-
ing function f : [0, 00) — [0, 00) with f(0) =0 and f(r) > 0 for all » € (0,00) such
that

fld(z, F)) < [lo = Swel| + ||z = Sea|| + |l = Thz]| + [lo — Tox|

for all z € K, where F' = F(S;) N F(S2) N F(Ty) N F(T3), then the sequence
{z,,} defined by (1.10) converges strongly to a common fixed point of Sy, Se, T} and
1.

Proof  Since JljlgoH% — Siz,|| = JLI{}O||$n — Tiz,|| = 0 for ¢ = 1,2 by Lemma
3.2, we have nh_}n(go fld(z,, F')) = 0. Since f : [0,00) — [0,00) is a nondecreasing
function satisfying f(0) =0, f(r) > 0 for all r € (0,00) and 7}1_{1;10 d(x,, F) exists by
Lemma 3.1, we have nhg)lo (xn, F) = 0.

Now, we show that {z,} is a Cauchy sequence in K. In fact, from (3.2), we

have

l2ns1 = all < (L+ (B3 = D)lln — gl

for each n > 1, where h, = max{kfll), kzg), l,(ll), lff)} and ¢ € F. For any
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m,n,m >n > 1, we have

IN

[l (1+ (hoey = D)1 — al

2
"1y —

IN

elmo1=1 plm—a-1 22 — q

IN

X (21

IN

[l —al

< Mz, —qll,

52, (h-1)

where M = ¢ Thus, for any q € F', we have

IN

lzn = all + lzm — 4l
(1 + M)]|zn — ql|-

|Zn — Zm|

IN

Taking the infimum over all ¢ € F', we obtain

|20 — zml| < (1+ M)d(x,, F).

Thus it follows from nh_{rolo (xn, F) = 0 that {z,} is a Cauchy sequence. Since
K is a closed subset of F, the sequence {z,} converges strongly to some ¢* € K.
It is easy to prove that F'(Sy), F'(Ss), F'(11) and F(T5) are all closed and so F is a
closed subset of K. Since nILIEO (xn, F) =0, ¢* € F, the sequence {xz,} converges

strongly to a common fixed point of Sy, So, 77 and T5. This completes the proof.

In the remainder of the section, we deal with the weak convergence of the
iterative scheme (1.10) to a common fixed point of mixed type of two asymptotically
nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings

in uniformly convex Banach spaces.
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Lemma 3.3 Under the assumptions of Lemma 3.1, for all ¢;,¢q2 € F = F(S1) N
F(Ss) N F(T)) N F(Ty), the limit

lim |[tz, + (1 —t)q1 — g

n—oo

exists for all ¢ € [0, 1], where {z,} is the sequence defined by (1.10).

Proof Set a,(t) = lim ||tz, 4+ (1 —t)¢1 — ¢2||. Then lim a,(0) = ||¢1 — ¢2|| and, from

n—oo

Lemma 3.1, lim a,(1) = lim ||z, — ¢2|| exists. Thus it remains to prove Lemma 3.3
for any ¢ € (0,1).
Define the mapping G, : K — K by

Gnxr = P((1—0a,)STP((1— B,)Syx + B, T (PTy)" 'z) +
an Ty (PTY)" ' P((1 — B,)Syx + B,To(PTy)" 'x))

for all x € K. It follows that

|Goz = Gyl = IP((1 = ) STP((1 = B,) S5 + B, To(PT)" ') +
a, Ty (PTY)" ' P((1 — B,)Syx + B, To(PTy)" 'z)) —
IP((1 = an)STP((1 = Ba) S35y + B To(PTo)"'y) +
a, Ti(PTy)" " P((1 = .)S5y + B To(PT2)"'y)) |

IN

1((1 = ) STP((1 — B,) Sy + B, To(PTy)" 'x) +

1((1 = an)STP((1 = Ba) S5y + B To(PTo)"'y) +
a, Ti(PTy)" " P((1 = B.)S5y + B To(PT2)"'y)) |
= (1= an)[|(ST((1 = Ba)S3a + B To(PT2)" ') —
(ST((1 = Ba) S5y + BuTo(PTy)" 1y) +
an(Ti(PTy)" " P((1 = Ba) Sy + B, To(PT)"'a)) —

(
(
a, Ty (PTy)" "' P((1 - B,)Syx + B, To(PTy)"'x)) —
(
(

(TL(PT)" ' P((1 = 8,) S5y + B To(PT2)"'y))||



22

IN

(1= an)hall((1 = Ba)(S3x — S3y) + BuTe(PT2)" 'z — y)ll +
nhall(1 = o) (S — S3y) + B To(PT2)"(z — y)|

(1 = an)ha (1 = Bn)(S5x = S5y)||

+(1 = an)ha| B To(PT2)" (z — y)|

+onha|(1 = 8.) (S5 = S3y)ll + anhal B To(PT)" (2 — y)|

= (hy + b — anhyy + hyonB)lle = yll + by Bullz — |

IN

anh Bl =yl + anhiy (1 = o)l — yl| + anBubi ||z — yl|
= (hi + h2Bn — anhl + hlowBo)lle =yl + b2 Ballz — vl
anhiy Bollz — yl| + +an Sl ||z — yl|
= hpllz —y (3.32)

for all z,y € K, where h,, = maq:{k,(}), kﬁf), lr(ll), l,(f)}. Letting h,, = 1+ v, it follows
from 1 < []72, h3 <€ 25%n % and 3°°° v, < oo that lim [[;Z,h3 = 1. Setting

Sn,m = Gn+m71Gn+m72...Gn (333)

for each m > 1, from (3.32) and (3.33), it follows that

n+m—1
1Snme = Sumyll ( [T 2Dl =yl
for all z,y € K and S, %, = Tptm, Snmq = q for any ¢ € F. Let

b = [[tSnm@n + (1 = 1)Snm@t — Smn(tzn + (1= )q)|- (3.34)

Then, using (3.34) and Lemma 2.4, we have

n+m 1 n+m 1
bn,m S H h2 Hxn - Q1|| - H h2 1HSn mTn — Sn,leH)
j=n

IN

Hh2 lzn — @l - Hh2 )" Hanm = arl)-

] n
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It follows from Lemma 3.1 and lim H h? =1 that lim b,,, =0

n—00 - n—00
J=n

uniformly for all m. Observe that

an,m(t) S HSn,m(txn + (1 - t)ql) - QQH + bn,m

= ||Sn,m(txn + (1 - t)q1) - Sn,mq2|| + bn,m
n+m—1

< (I P)litan + (1 =) — gall + bom
j=n

< ([]7)an(t) + bum.
j=n

Thus we have lim sup a,,(¢) < liminf a,(¢), That is, lim |[tz, + (1 —t)q; — go|| exists

n—oo

for all ¢ € (0,1). This completes the proof.

Lemma 3.4 Under the assumptions of Lemma 3.1, if E has a Frechet dif-
ferentiable norm, then, for all q1,q2 € F = F(S1) N F(S2) N F(Ty) N F(Ty), the
limit
Ji_{go@mﬂ% — q2))

exists, where {x,} is the sequence defined by (1.10). Furthermore, if Ww({z,})
denotes the set of all weak subsequential limits of {z,}, then (x*—y*, j(q1—¢q2)) =0
for all q1,q2 € F and x*,y* € Ww({z,}).

Proof This follows basically as in the proof of Lemma 3.2 of [8] using Lemma 3.3

instead of Lemma 3.1 of [8].

Theorem 3.4 Under the assumptions of Lemma 3.2, if £ has Fréchet differentiable
norm, then the sequence {z,} defined by (1.10) converges weakly to a common fixed

point of S, S5, T} and T5.

Proof Since F is a uniformly convex Banach space the sequence {z,} is bound-
ed by Lemma 3.1, there exists a subsequence {x,, } of {x,} which converges weakly

to some g € K. By Lemma 3.2, we have
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lim ||z, — Si%n,| = im ||z, —Tiz,,| =0
k—o00 k—o0

for i = 1.2. It follows Lemma 2.3 that ¢ € F' = F'(S1) N F(S2) N F(T1) N F(T3).
Now, we prove that the sequence {z,} converges weakly to ¢q. Suppose that there
exists a subsequence {w,,;} of {x,} such that {z,, } converges weakly to some
q1 € K. Then, by the same method given we can also prove that ¢; € F. So,
¢, € F NnWw({z,}). It follows from Lemma 3.4 that

lg—ail*={qg—aq1,5(g—q1)) = 0.

Therefore, ¢; = ¢, which shows that the sequence {x,} converges weakly to g.

This completes the proof.

Theorem 3.5 Under the assumptions of Lemma 3.2, if the dual space E* of E
has the Kadce-Klee property, then sequence {z,} defined by (1.10) converges weakly

to a common fixed point of Sy,.55, 77 and T5.

Proof Using the same method given in Theorem 3.4, we can prove that there ex-
ists a subsequence {z,,} of {z,} which converges weakly to some ¢ € F =
F(S1) N F(S2) N F(Ty) N F(Sy). Now, we prove that the sequence {z,} converges
weakly to g. Suppose that there exists a subsequence {z,,} of {xz,} such that {x,, }
converges weakly to some ¢* € K. Then, as for ¢, we have ¢* € F. It follows from

Lemma 3.3 that the limit

lim |[tz, — (1 —t)q — ¢

n—oo

exists for all ¢ € [0,1]. Again, since ¢,¢* € Ww({z,}),¢" = ¢ be Lemma 2.5.

This shows that the sequence {z,} converges weakly to ¢q. This completes the proof.
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Theorem 3.6 Under the assumptions of Lemma 3.2, if E satisfies Opial’s condi-
tion, then the sequence {z,} defined by (1.10) converges weakly to a common fixed

point of S, S5, T} and T5.

Proof Using the same method as given in Theorem 3.4, we can prove that there
exists a subsequence {z, } of {z,} which converges weakly to some ¢ € F =
F(S1)N F(S2) N F(Ty) N F(S3). Now, we prove that the sequence {z,} converges
weakly to g. Suppose that there exists a subsequence {z,,} of {z,} such that {z,, }
converges weakly to some § € K and § # g. Then, as for ¢, we have ¢ € F. Using

Lemma 3.1, we have the following two limits exist:
im ||z, —ql|=c,  lm ||lz, —ql| = .
n—00 n—00

Thus, by Opial’s condition, we have

¢ = limsup |z, —¢|
k—oo

< limsup ||z,, —q|
k—o0

— limsup |2, — 7]

J—00

< limsup e, -l =c.

J—00

which is contradiction, and so ¢ = g. This shows that the sequence {z,} converges

weakly to g. This completes the proof.



CHAPTER 4
Conclusions

In this chapter, we will present the main results obtained in this research.

4.1 Conclusions

Lemma 4.1 Let £ be a real uniformly convex Banach space and A a nonempty closed
convex nonexpansive retract of £ with P as a nonexpansive retraction. Let S;, So
: K — K be two asymptotically nonexpansive self-mappings With{k:él)}, {l{:g)} -
[1,00) and Ty, T5 : K — E be two asymptotically nonexpansive nonself-mappings
with {I7}, {1} C [1, 00) such that 3°°7 (kY —1) < oo and °°° (I — 1) < o0
for i = 1, 2, respectively and F' = F(S1) N F(Sy) N F(T1) N F(T3) # (. Suppose that
{a,} and {B,} are real sequences in [0,1). From an arbitrary z; € K, define the
sequence {x,} using (1.10) Then
@) nan;O ||zn — ¢l| exists for any g € I

(2) lim d(z,, F) exists.

Lemma 4.2 Let F ba a real uniformly convex Banach space and K a nonempty
closed convex nonexpansive retract of £ with P as a nonexpansive retraction. Let
S1, 92 : K — K be two asymptotically nonexpansive self-mappings with {l%(zl)}, {k‘,(f)} C
[1,00) and T3,T, : K — E be two asymptotically nonexpansive nonself-mappings
with {15V}, {17} € [1,00) such that 3% (k{” — 1) < 0o and 32, (1Y) — 1) < o0
for i = 1,2, respectively and F' = F(S;) N F(S2) N F(Ty) N F(Ty) # (). Suppose that
{a,,} and {3,} are real sequences in [e, 1 — €| for some € € (0, 1). From an arbitrary
x1 € K, define the sequence {x,} using (1.10). If ||z — Tiy|| < ||S;x — Tyy|| for all

z,y € K and i = 1,2, then lim |z, — S;z,|| = lim |z, — Tiz,| =0 for i = 1,2.

Theorem 4.1 Under the assumptions of Lemma 4.2, if one of S;,S55,77 and T5
is completely continuous, then the sequence {z,} defined by (1.10) converges strong-

ly to a common fixed point of S;, So, 17 and T5.
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Theorem 4.2 Under the assumptions of Lemma 4.2, if one of S;, S3, 71 and T5
is semi-compact, then the sequence {z,} defined by (1.10) converges strongly to a

common fixed point of Sy, S, T} and T5.

Theorem 4.3 Under the assumptions of Lemma 4.2, if there exists a nondecreasing
function f : [0,00) — [0,00) with f(0) = 0 and f(r) > 0 for all » € (0,00) such
that

fld(z, F)) <z = Swel| + [lo = Sol| + [ = Tha|| + ||z — Toz|

for all x € K, where F' = F(S) N F(S2) N F(T1) N F(Ty), then the sequence
{z,} defined by (1.10) converges strongly to a common fixed point of Sy, Sy, T} and
T5.

Lemma 4.3 Under the assumptions of Lemma 4.1, for all ¢;,¢q2 € F = F(S1) N
F(Ss) N F(T}) N F(T5), the limit

lim |[tz, + (1 —t)q1 — g

n—oo

exists for all ¢ € [0, 1], where {z,} is the sequence defined by (1.10).

Theorem 4.4 Under the assumptions of Lemma 4.2, if F has Fréchet differentiable
norm, then the sequence {z,} defined by (1.10) converges weakly to a common fixed

point of S, S5, T} and T5.

Theorem 4.5 Under the assumptions of Lemma 4.2, if the dual space £* of E
has the Kadce-Klee property, then sequence {z,} defined by (1.10) converges weakly

to a common fixed point of Sp,.S5,77 and T5.
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Theorem 4.6 Under the assumptions of Lemma 4.2, if E satisfies Opial’s condi-
tion, then the sequence {z,} defined by (1.10) converges weakly to a common fixed

point of S, S5, T} and T5.
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Abstract

In this research, we introduce a projection type iterative scheme of mixed type for two asymp-
totically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings in
uniformly convex Banach spaces. Weak and Strong convergence theorems are established in

uniformly convex Banach spaces.
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1 Introduction

Let K be a nonempty closed convex subset of a real normed linear space F. A self-mapping
T : K — K is said to be nonexpansive if ||Tx — Ty|| < ||z — y|| for all 2,y € K. A self-mapping
T : K — K is called asymptotically nonexpansive if there exists a sequence {k,} C [1,00), k, — 1

as n — oo such that

[ T2 =T y|| < knllz = yll (1.1)
for all z,y € K and n > 1.

A mapping T : K — K is said to be uniformly L-Lipschitzian if there exists a constant L > 0

such that

[Tz —T"y|| < Lilz -y (1.2)
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kratai.in2304@hotmail.com (I. kapang,), tanakit.th@up.ac.th (T. Thianwan)
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forall z,y € K and n > 1.

It is easy to see that if T' is an asymptotically nonexpansive, then it is uniformly L-Lipschitzian
with the uniform Lipschitz constant L = sup{k, : n > 1}.

Fixed-point iteration process for nonexpansive self-mappings including Mann and Ishikawa it-
eration processes have been studied extensively by various authors [1, 9, 11, 16, 17, 22].
For nonexpansive nonself-mappings, some authors [10, 14, 25, 27, 32] have studied the strong and
weak convergence theorems in Hilbert space or uniformly convex Banach space. In 1972, Goebel
and Kirk [4] introduced the class of asymptotically nonexpansive self-mappings, who proved that
if K is nonempty closed convex subset of real uniformly convex Banach space and T is an asymp-
totically nonexpansive self-mapping on C, then T has a fixed point.

In 1991, Schu [23] introduced a modified Mann iteration process to approximate fixed points of
asymptotically nonexpansive self-mappings in Hilbret space. More precisely, he proved the follow-

ing theorem.

Theorem 1.1 (see [23]). Let H be a Hilbert space, and let K be a nonempty closed convex and
bounded subset of H. Let T': K — K be an asymptotically nonexpansive mapping with sequence
{kn} C [1,00) for all n > 1, limy—ock, = 1 and > oo (k2 — 1) < co. Let {ay} be a sequence in
[0.1] satisfying the condition 0 < a < a,,, < b < 1,n > 1, for some constant a,b. Then the sequence

{z,,} generated from an arbitrary z1 € K by the relation
Tp+1 = (1 — ap)xy + anT"xy, n>1, (1.3)

converges strongly to some fixed point of 7T'.

Since then, Schu’s iteration process has been widely used to approximate fixed points of asymp-
totically nonexpansive self-mappings in Hilbert or Banach
spaces (see [16],[20],[21],[23],[28]).

The concept of asymptotically nonexpansive nonself-mappings was introduced by Chidume,
Ofoedu, and Zegeye [4] in 2003 as the generlization of asymptotically nonexpansive self-mappings.

The nonself of asymptotically nonexpansive nonself-mapping is defined as follows.

Definition 1.2 (see [4]). Let K be a nonempty subset of a real normed linear space E. Let
P : F — K be a nonexpansive retraction of £ onto K. A nonself-mapping T : K — F is said to be

asymptotically nonexpansive if there exists a sequence {k,} C [1,00) , k, — 1 as n — oo such that
IT(PT)* ' — T(PT)} ™ y|| < knllz —y] (1.4)

for all z,y € K and n > 1. A non-self-mapping T is said to be uniformly L — Lipschitzian if

there exists a constant L > 0 such that

IT(PT)"'e — T(PT)} 'yl < Lllz —y| (1.5)
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for all z,y € K and n > 1.
We denote by (PT)° the identity map from K onto itself. In [2], the authors studied the fol-

lowing iterative sequence: z; € K,
Ln+1 = P((l - an)xn + OénT(PT)nilxn)v (16)

to approximate some fixed point of 1" under suitable conditions.

If T is a self-mapping, then P becomes the identity mapping so that (1.4) and (1.5) reduce to
(1.1) and (1.2), respectively, and (1.6) reduces to (1.3).

In 2006, Wang[31] generalized the iteration process (1.8) as follows: z; € K,

Yn = P((l - 6n)xn + /BnTQ(PTQ)n_lxn)a
Tni1 = P((1—ap)zn +a, T (PTY)" Yyn), n > 1, (1.7)

where 71,75 : K — E are asymptotically nonexpansive nonself-mappings and {a,,} and {8,}
are real sequences in [0,1). He proved strong and weak convergence of the sequence {ay,} defined
by (1.7) to a common fixed point of 77 and T5 under appropriate conditions. Meanwhile, the results
of [31] generalized the results of [2].

In 2009, a new iterative scheme which is called the projection type Ishikawa iteration for two
asymptotically nonexpansive nonself-mappings was defined and constructed by Thianwan [30]. It

is given as follows:

Yn = P((l - ﬁn)xn + ﬁnTQ(PTQ)n_ll'n)a
Tpi1 = P((1—ap)yn +an T (PTY) Ly,), n > 1, (1.8)

where {a,} and {8,} are appropriate real sequences in [0,1). He studied the scheme for two
asymptotically nonexpansive nonself-mappings and proved strong and weak convergence of the se-
quences {z,} and {y,} to a common fixed point of 77, T5 under suitable conditions in a uniformly
convex Banach space.

Note that Thianwan process (1.8) and Wang process (1.7) are independent neither reduces to
the other.

If Ty =T, and 3, = 0 for all n > 1, then (1.8) reduces to (1.6). It also can be reduces to Schu
process (1.3).

Recently, Guo, Cho and Guo [7] studied the following iteration scheme: z; € K,

Yn = P((l - ﬁn>S£lxn + ﬁnTZ(PT2)n_1xn)a
Tpi1 = P(1—ap) STz, +an, T (PT)" tyn), n > 1, (1.9)

where 51,59 : K — K are asymptotically nonexpansive self-mappings, 77,75 : K — E are asymp-
totically nonexpansive nonself-mappings and {«,}, {8,} are two sequences in [0,1). They studied

the strong and weak convergence of the iterative scheme (1.9) under proper conditions.



Convergence of projection type iterative processes 4

If S; and Sy are the identity mappings, then the iterative scheme (1.9) reduces to the scheme
(1.7).

Motivated by these recent works, we introduce and study a new iterative scheme in this paper.
The scheme is defind as follows.

Let E be a real Banach space, K be a nonempty closed convex subset of £ and P : E — K be
a nonexpansive retraction of £ onto K. Let 51,52 : K — K be two asymptotically nonexpansive
self-mappings and 71,75 : K — E be two asymptotically nonexpansive nonself-mappings. Then,

we define the new iteration scheme of mixed type as follows : 1 € K,

Yn = P((l - 6n)sgmn + /BnTQ(PTyL_liUn)y
Tpi1 = P((1—ap) Sty + Ty (PT)" yn), n > 1, (1.10)

where {ay}, {8,} are two sequences [0,1).

The iterative scheme (1.10) is called the projective type iterative process for mixed type of
asymptotically nonexpansive mappings. If S; and S5 are the identity mappings, then the iterative
scheme (1.10) reduces to (1.8).

Note that (1.9) and (1.10) are independent neither reduces to the other.

The purpose of this paper is to construct an iteration scheme for approxi-
mating common fixed points of two asymptotically nonexpansive self-mappings and
two asymptotically nonexpansive nonself-mappings and to prove some strong and weak convergence

theorems for such mappings in a real uniformly convex Banach space.

2 Preliminaries

We denote the set of common fixed points of S1, 52,71 and T by F' = F(S1)NF(S2)NF(T1)N
F(T») and denote the distance between a point z and a set A in F by d(z, A) = infyca ||z — z||.

Now, we recall some well-known concepts and results.
Let E be a real Banach space, E* be the dual space of E and J : E — 2F" be the normalized
duality mapping defined by

J(@) ={f € E*: {x, f) = [ £l [ 1] = N[}

for all x € E, where (-,-) denotes duality pairing between E and E*. A single-valued normal-
ized duality mapping is denoted by j.

A subset K of a real Banach space E is called a retract of E [2] if there exists a continuous
mapping P : E — K such that Px = z for all x € K. Every closed convex subset of a uniformly
convex Banach space is a retract. A mapping P : E — E is called a retraction if P> = P. It

follows that if a mapping P is a retraction, than Py = y for all y in the range of P.
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Recall that a Banach space E is said to satisfy Opial’s condition [15] if x, — x weakly as

n — oo and x # y implying that

limsup ||z, — x| < limsup ||z, — ||
n—oo n—o0
A mapping T : K — E is said to be semi-compact if, for any sequence {z,} in K such that
|zn — Twy|| — 0 as n — oo, there exists a subsequence {z,,} of {z,} such that {z,;} converges
strongly to z* € K.
A Banach space E is said to have a Frechet differentiable norm [17] if, for all x € U = {x €
E: ] =1},

ety e
t—0 t

exists and is attained uniformly in y € U.
A Banach space E is said to have the Kadec-Klee property [5] if for every sequence {z,} in

E, x, — x weakly and ||z,| — ||z, if follows that x,, — x strongly.
In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 [26] Let {an},{bn} and {c,} be three nonnegative sequences satisfying the follow-

ing condition:

Ap+1 S (1 + bn)an + Cn

for each n > ng, where ngy is some nonnegative integer, > >° b, < oo and Y

n=no cnp < 00.

[eS)
n=ngp

Then lim,—coa, exists.

Lemma 2.2 [23] Let E be a real uniformly convexr Banach space and 0 < p < t, < q <1 for each
n > 1. Also, suppose that {x,} and {y,} are two sequences of such that

limsup [|lzp|| <7, limsup|lyn|| <7 lim [[thzy + (1 —tp)ynll = r
n—o00 n—o0 n—00

hold for some r > 0. Then lim,—oo||zn — ynl| = 0.

Lemma 2.3 [2] Let E be a real uniformly convex Banach space, K be a nonempty closed con-
vex subset of B and T : K — FE be an asymptotically nonexpansive mapping with a sequence
{kn} C [1,00) and k,, — 1 asn — oo. Then I —T is demiclosed at zero, i.e., if v, — x weakly and
Xy — Txy — 0 strongly, then x € F(T), where F(T) is the set of fized points of T.

Lemma 2.4 [3] Let E be a uniformly convex Banach space and K be a convex subset of E. Then

there exists a strictly increasing continuous convex function 7y : [0,00) — [0,00) with v(0) = 0 such
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that, for each mapping S : K — K with a Lipschitz constant L > 0,

lan + (1 = @)Sy — S(az + (1 — a)y)|| < Ly (|lz — yll = £ [1Sz — Syl)
forall z,y € K and 0 < a < 1.

Lemma 2.5 [3] Let E be a uniformly convexr Banach space such that its dual space E* has the

Kadec-Klee property. Suppose {xy} is a bounded sequence and fi, fo € Wy,({zyn}) such that

Jimflaz, + (1 —a)fi = fo

exists for all a € [0,1], where W,,({z,,}) denotes the set of all weak subsequential limits of {x,,}.
Then f1 = fo.

3 Main results

In this chapter, we prove theorems of strong and weak convergence of the iterative scheme given
in (1.10) to a common fixed point of mixed type of two asymptotically nonexpansive self-mappings
and two asymptotically nonexpansive nonself-mappings in uniformly convex Banach spaces.

In order to prove our main results, the following lemmas are needed.

Lemma 3.1 Let F be a real uniformly convex Banach space and K a nonempty closed convex non-
expansive retract of E with P as a nonexpansive retraction. Let Si, S9 : K — K be two asymp-
totically nonexpansive self-mappings with{kgl)}, {k,(?)} C [1,00) and Th, T5 : K — FE be two asymp-
totically nonexpansive nonself-mappings with {lg)}, {lff)} C [1,00) such that Zzo:l(kﬁf) -1)< o0
and Zflo:l(lff) — 1) < oo for i = 1, 2, respectively and F' = F(S1) N F(S2) N F(T1) N F(Ts) # 0.
Suppose that {ay,} and {8,} are real sequences in [0,1). From an arbitrary z; € K, define the
sequence {z,} using (1.10) Then

(1) lim [jay, — g|| exists for any ¢ € F}

(2) Tim d(xn, F) exists.

n—o0

Proof Let q € F. Setting h,, = mam{k:,(ll), k:,(?), lT(Ll), l,(f)}. Using (1.10), we have

lyn = all = IP((1 = Bn)S52n + BuTo(PT2)" " 2n) — g
= ||P((1 ~ Bn)S3zn + BuT2(PT2)" " 20) — P(q)|
11 = Bn) (S5 20 — @) + Bu(T2(PT2)" "z — q)|
(1= Ba)hallzn — gl + Buhnllzn — g
hanllzn — gl (3.1)

IAINA
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and so

lzns1 —all = [P~ n)STyn + T2 (PT1)" 'yn) — d
1P((1 — ) STy + anT1(PT1)" " yn) — P(g)|

< (1 = an)(STyn — @) + an(T1(PT)"  yn — q)|

< (= an)hallyn — all + anhallyn —qll

= hallyn — 4|l

< hllen —qll

= (14 (b = D)]zn — 4l (3.2)

Since Zzozl(kr(f) —1) < oo and fozl(l,(f) —1) < oo for i = 1,2, we have
322 (h2 — 1) < co. Tt follows from Lemma 2.1 that lim ||z, — q| exists.
n—oo

(2) Taking the infimum over all ¢ € F' in (3.2), we have

d(@i1, F) < (1+ (2 — 1))d(, F)

for each n > 1. It follows from > °°,(h? — 1) < oo and Lemma 2.1 that the conclusion (2)
holds. This completes the proof.

Lemma 3.2 Let F be a real uniformly convex Banach space and K a nonempty closed convex
nonexpansive retract of F with P as a nonexpansive retraction. Let S1, .52 : K — K be two asymp-
totically nonexpansive self-mappings with {kg)}, {k:,(f)} C [1,00) and T1, T : K — E be two asymp-
totically nonexpansive nonself-mappings with {lg)}, {17(12)} C [1,00) such that Zjﬁ;l(kﬁ ) _ 1) < o0
and fo:l(lff) —1) < oo for i = 1,2, respectively and F = F(S1) N F(S2) N F(Ty) N F(Ty) # 0.
Suppose that {a,} and {f,} are real sequences in [¢, 1 — €] for some € € (0,1). From an arbitrary
r1 € K, define the sequence {z,} using (1.10). If ||z — Tiy|| < ||Siz — Tiy|| for all z,y € K and

i=1,2, then lim |z, — Siz,|| = lim ||z, — Tiz,| =0 for i = 1,2.
n—oo n—oo

Proof Suppose that ||z — Tiy|| < [|Siz — Tiy|| for all z,y € K and i = 1,2. Let ¢ € F. Set

O NI lg)}. By Lemma 3.1, we are that lim, .||z, — ¢|| exists. Assume that

hn, = maz{k
lim [|x, — q|| = ¢. Since Y00 (h2 — 1) < oo and lim ||xp+1 — q|| = ¢, letting n — oo in the
n—oo n—oo

inequality (3.2), we have

lim |[(1—an)(STyn —q) + anTh (PTl)”flyn —q)|| =c. (3.3)

n—oo

In addition, ||STyn — q| < kg)Hyn — ¢||, taking the lim sup on both sides in this inequality, we

have

limsup [|STyn — ql| < c. (3.4)

n—oo



Convergence of projection type iterative processes

Taking the lim sup on both sides in the inequality (3.1), we obtain limsup ||y, — ¢|| < ¢, and

o n—oo
limsup || T (PT1)" "y — ql| < limsupIP|[y, —q]| < c. (3.5)
By using (3.3), (3.4), (3.5) and Lemma 2.2, we have
lim ||STy, — T1(PT1)" Yy, = 0. (3.6)
Since
lyn = T1(PT1)" | < [[SFyn —T1(PT1)" ™ ynll- (3.7)
Letting n — oo in the inequality (3.7), by (3.6), we have
lim ||y, — T1(PT1)" Yy, = 0. (3.8)
n—oo
From (3.2), we have
l#nt1 =gl < hallyn = all < Bollyn — all- (3.9)
Taking the lim inf on both sidies in the inequality (3.9), we have
liminf ||y, — ¢q|| > ¢ (3.10)
n—oo

Since limsup ||y, — ¢|| < ¢, by (3.10), we have lim ||y, — ¢|| = ¢. This implies that
n—o0o

n—oo

¢ =lim [ly, —ql| < lim [[(1 = 5a)(S3zn — ) + Br(To(PT2)" ' an — q)|
< lim ||z, —q|| = ¢,
n—oo

and so

lim [|(1 = 5,)(S32n —q) + Ba(To(PT2)" 2n — )| = c. (3.11)

n—oo

In addition, we have

limsup ||S3a, — ¢|| < limsup &Pz, — ¢ = ¢ (3.12)
n—oo n—oo
and
lim sup || To(PTy)" " 2n — gl < limsup Y|z, —ql| = c. (3.13)

It follows from (3.11), (3.12), (3.13) and Lemma 2.2 that
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lim ||SYx, — To(PT2)" ta,|| = 0. (3.14)
n—oo

Now, we prove that

lim ||z, — Tiay,| = lim ||z, — Thz,| = 0.
Indeed, since ||z, — To(PTo)" tay || < ||S5an — To(PT2)" 1oy (3.15)

Using (3.14) and (3.15), we have

lim ||z, — To(PT2)" tz,| = 0. (3.16)

Since Syx, = P(Syxy,) and P : E — K is nonexpansive rectraction of E onto K, we have

1y = Szanll < (1= B0)(S5an — S324) + Bu(To(PT2)" 'y — S5y
< BallTo(PT)" e, — Syanl|.
Using (3.14), we have
lim ||y, — Sya,| = 0. (3.17)
n—oo

Furthermore, we have

1Yn = @nll < llyn — S3aall + 18520 — To(PT2)" 'ay||
+| T (PTR) oy, — 2] (3.18)

It follows from (3.14), (3.16), (3.17) and (3.18) that
lim ||z, —yn| = 0. (3.19)
n—oo

Since
[2n — TL(PTL)"  ap|| < [|ST2n — Ti(PT)™ oy ||
and

17 an — T1(PTH)"  an |l < 15720 — STynll + [1STyn — Ta(PT1)" s
H| T (PTy)" yn — T1(PT1)™ |
= ki ln — ynll + 17y + TL(PTL)™ Ly
DIy — 2all- (3.20)
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Using (3.6), (3.19) and (3.20), we have

lim [|S}z, — Ty (PT1)" ', =0,

n—oo
and so
lim ||a, — Ty (PTy)" ‘2, = 0.

In addition,

|zns1 = STynll = [IP((1— an)STyn + anT1(PT1)" " yn) — P(STyn) |

< (L= o) ||STyn — STynll + an | TH(PTY)" iy

Thus, it follows from (3.6) that
lim 7041 — Sgnll = 0.
n—oo

In addition,

|Znt1 — TL(PT)" Yynll < lans1 — SPunll + 15T yn — TL(PTL)" ynll.

By using (3.6) and (3.23), we have
Jim [z = 1 (PT1)" 'yl = 0.

It follows from (3.21) and (3.22) that

|STxn —xn| = ||STan — Tl(PTl)”_la:n + Tl(PTl)”_la:n — x|
< |18Fan = Ti(PT)"™ || + T (PT)™ g — |

— 0 (as n — 00).
In addition,

IS 2 — To(PT)" ta|| =
<

Thus, it follows from (3.16) and (3.25) that
lim ||ST'x, — To(PTe)" x| = 0.

In addition,

HS{L‘%TL —Tn +Tp — T2(PT2)n_lxn||
15720 — @nll + |20 — To(PT2)" 0.

10

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)



Convergence of projection type iterative processes 11

15T yn — T2(PT2)H_15CTL|| [1STYn — ST@n + Stan — T2(PT2)H_15UTL||

< |STyn — STl + [|STan — To(PT2)" 'a||
< kD llyn =zl + 15720 — To(PT2)" -

By using (3.19) and (3.26), we have

lim [|STy, — To(PTe)" a,|| = 0. (3.27)
It follows from (3.23) and (3.27) that
|21 = To(PT2)" tynll = [[@ns1 = STyn + STyn — To(PT2)" 'ay|

= lzns1 = STyl + 157 yn — To(PT2)"
— 0 (as n — 0). (3.28)

Again, since (PT})(PT;)" %y, 1,2, € K for i = 1,2 and T1,T are two asymptotically nonex-

pansive nonself-mappings, we have

ITo(PT)" gt — Tiall = | Ti((PT)(PT)" 2ynr) — Ti(Pan)|
< max{l{" 1Y|(PT)(PT;)" 2yn_1 — Py |
< max{l{", IPHIT(PT)" Y1 — 2. (3.29)

Using (3.24) , (3.28) and (3.29), for i = 1,2, we have

Jim || T(PT)" yn—1 — Ty || = 0. (3.30)
Moreover, we have

241 = ynll < llensr — To(PTY)" ynll + I T (PT)" Y — ynll-
Using (3.8) and (3.24), we have

nh_{go |Zn41 = ynll = 0. (3.31)
In addition, for i = 1,2, we have

l2n = Tiwn|l < ll2n — T(PT)" ol + | T(PT)" on — Ti(PT)" yn|

+H,TZ(PT;)nilyn—1 - Exn”

[ — TP ]| + maa{sup D, sup 2} 2 — o |
n>1 n>1

IN

H|Ti(PT)™  yn—1 — Tiznll.
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Thus, it follows from (3.16), (3.22), (3.30) and (3.31) that

lim ||z, — Tiay,| = lim ||z, — Thz,| = 0.
n—oo n—oo

Finally, we prove that
lim ||z, — Siz,| = lim ||z, — Sex,|| = 0.
n—oo n—oo

In fact, for i = 1,2, we have
|2 = Siznll < e = Ti(PT)" ap|l + |Sizn — Ti(PT)" 2|
|lzn — Ti(PTi)nilmrL” + ST e — Ti(PTi)nilmrLH-

A\

Thus, it follows from (3.16), (3.21), (3.22) and (3.26) that
lim ||z, — Siz,|| = lim ||z, — Sex,| = 0.
n—oo n—oo

The proof is completed.

Now, we find two mapping, S; = So = S and 71 = T» = T, satisfying the condition
lx — Tiy|| < ||Sixn — Tyl for all z,y € K and i = 1,2 in Lemma 3.2 as follows.

Example 3.1[13] Let R be the real line with the usual norm | - | and let K = [—1,1]. Define
two mappings S, T : K — K by

_— { —2sin2, if z € [0,1],

2sing, ifxe[-1,0)
and

Sy — { x, ifze|0,1]

—z, ifxe[-1,0).

Now, we show that 7" is nonexpansive. In fact, if z,y € [0,1] or z,y € [—1,0), than we have

Tz — Ty| = 2[sin § —sin | < |z — y|.

If z € [0,1] and y € [-1,0) or x € [-1,0) and y € [0, 1], then we have

|Tx —Ty| = 2\Sing—sing\
. Tty rT—y
= 4|sin —= cos |
4
< z+y
< lz -yl
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This implies that T is nonexpansive, and so T' is an asymptotically nonexpansive mapping with
kn = 1 for each n > 1. Similarly, we can show that S is an asymptotically nonexpansive mapping
with {,, = 1 for each n > 1.
Next, we consider the following cases:
Case 1. Let z,y € [0,1]. Then we have
|z —Ty| = |r +2sin 4| =[Sz — Ty|.
Case 2. Let x,y € [-1,0). Then we have
lx —Ty| = v —2sin 4| < | -2 —2sin§| =[Sz — Ty|.
Case 3. Let x € [-1,0) and y € [0,1]. Then we have
lz —Ty| =z +2sinf| < |-z +2siny| =[Sz — Ty|.
Case 4. Let z € [0,1] and y € [—1,0]. Then we have
|z — Ty| = |z — 2sin §| =[Sz — Ty|.

Theorem 3.1 Under the assumptions of Lemma 3.2, if one of S7,S2, 77 and T» is completely con-
tinuous, then the sequence {x,} defined by (1.10) converges strongly to a common fixed point of
Sl, SQ, T1 and TQ.

Proof Without loss of generality, we can assume that S; is completely continuous. Since {z,} is
bounded by Lemma 3.1, there exists a subsequence {S12,, } of {S12,} such that {Sx,,} converges

strongly to some ¢*. Moreover, we know that

lim ||z, — S12n,]| = lim ||z, — Saxy,|| =0
j—00 Jj—00

and
lim ||z, — Th2p, || = lim ||z, — Tox,|| =0
j—00 j—00

by Lemma 3.2, which imply that
[2n; = ¢l < lzn; — S12n, || + [[S120; — ¢*[| = 0

as j — 00, and so xn; — ¢* € K. Thus, by the continuity of S, S2,T1 and T, we have

lg” = Sig*ll = lim [lzn; — Sizn,|| =0
and
Hq* - TZQ*H = lim ||m’ﬂg - TanJ” =0
j—oo

for i = 1,2. Thus it follows that ¢* € F(S1) N F(S2) N F(T1) N F(T3). Furthermore, since

lim ||z, — ¢*|| exists by Lemma 3.1, we have lim ||z, —¢"|| = 0. This completes the proof.
n—oo n—oo

Theorem 3.2 Under the assumptions of Lemma 3.2, if one of 51, So, T1 and T3 is semi-compact,
then the sequence {z,} defined by (1.10) converges strongly to a common fixed point of Si, Sz, T}
and T5.
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Proof Since lim |z, — Siz,|| = lim ||z, — Tix,|| = 0 for ¢ = 1,2 by Lemma 3.2 and one
n—oo n—oo

of S1,82,T1 and T3 is semi-compact, there exists a subsequence {z,;} of {x,} such that {z,,}
converges strongly to some ¢* € K. Moreover, by the continuity of S, 52,77 and T,, we have
lg* — Siq*|| = lim |lzn, — Sizn,|| = 0 and [|¢* — Ti¢*|| = lim ||z, — Tizy,|| = 0 for i = 1,2. Thus
j—0o0 j—0o0
it follows that ¢* € F(S1) N F(S2) N F(Th) N F(Ty). Since lim ||z, — ¢*|| exists by Lemma 3.1, we
n—oo
have lim |x, — ¢*|| = 0. This completes the proof.
n—oo

Theorem 3.3 Under the assumptions of Lemma 3.2, if there exists a nondecreasing function
f:]0,00) = [0,00) with f(0) =0 and f(r) > 0 for all » € (0, 00) such that

fld(z, F)) < ||z = Sizl| + |lz = Saxl| + [l — Tyl + [l — Tox|

for all z € K, where F = F(S1) N F(S2) N F(T1) N F(T3), then the sequence {z,} defined by
(1.10) converges strongly to a common fixed point of S1, Sa, 71 and Tb.

Proof  Since hm lxn — Sizn|| = hm |z, — Tixy| = 0 for @ = 1,2 by Lemma 3.2, we have
hm fd(xy, )) = 0. Since f : [0, oo) [0,00) is a nondecreasing function satisfying f(0) =
0 f( ) >0 for all » € (0,00) and lim d(zy, F) exists by Lemma 3.1, we have lim d(x,, F)) = 0.

Now, we show that {z,} is a Cauchy sequence in K. In fact, from (3.2), we have

l#ns1 = qll < 1+ (A5 = D) |zn — gl

for each n > 1, where h, = max{ky(ll), k:g?), l%l), lg)} and ¢ € F. For any m,n,m > n > 1,

we have

lzm —all < (1+ (h2,_q —1))[zm-1 — 4l
h2
< em |zpmoy — g
2 2
< ehmflflehm*271 ||l'm72 - QH
< X (RED)|z, — g
< MHxn - (JH7

where M = eZZ1(hi-1), Thus, for any q € F', we have

[en = zml < llen =gl + l2m = qll
< (T+ M)llzn —ql|-

Taking the infimum over all ¢ € F', we obtain

[0 = zm|| < (1 4+ M)d(zn, F).

14
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Thus it follows from lim d(z,,F) = 0 that {z,} is a Cauchy sequence. Since K is a closed

n—oo

subset of E, the sequence {x,} converges strongly to some ¢* € K. It is easy to prove that
F(S1), F(S2), F(T1) and F(T%) are all closed and so F'is a closed subset of K. Since lim d(zy, F) =

n—oo

0, ¢* € F, the sequence {x,} converges strongly to a common fixed point of Si, So, 71 and Tb.

This completes the proof.

The remainder of the section, we deal with the weak convergence of the iterative scheme (1.10)
to a common fixed point of mixed type of two asymptotically nonexpansive self-mappings and two

asymptotically nonexpansive nonself-mappings in uniformly convex Banach spaces.

Lemma 3.3 Under the assumptions of Lemma 3.1, for all ¢1,¢2 € F = F(S1) N
F(SQ) N F(Tl) N F(TQ), the limit

lim |[tz, + (1 —t)q1 — g2
n—oo
exists for all ¢ € [0, 1], where {x,} is the sequence defined by (1.10).

Proof Set a,(t) = lim |[tzp, + (1 —t)g1 — ¢2|. Then lim a,(0) = [|¢1 — ¢2|| and, from Lemma
3.1, lim a,(1) = lim ||z, — q2|| exists. Thus it remains to prove Lemma 3.3 for any ¢t € (0, 1).
Define the mapping G,, : K — K by

Gpr = P((l — an)S{LP((l — ,Bn)ng + ﬂnTQ(PTg)nflx) 4
anTL(PT)" ' P((1 = B,)Shx + B To(PT:)" ')

for all x € K. It follows that

|Gnz — Guyll = P((1 — an)STP((1 = B,)S52 + B, To(PTy)" ') +
an T (PT)" ' P((1 = 3,) S5 + B, To(PTy)" '2)) —
IP((1 = ) STP((1 = Bn) S5y + BuTo(PT2)"'y) +
anT1(PT1)" ' P((1 = Bn)S3y + BaTa(PT2)" ')
1((1 = an)STP((1 = Ba) S5 + B To(PT2)" ') +
an T (PT)" 1 P((1 = 3,)S%x + B, To(PTy)" '2)) —
1((1 = ) STP((1 = Bn) S5y + BuTa(PT2)" " y) +
anT1(PT1)" ' P((1 = B,)S5y + BaTa(PT2)" )|
= (1= a)[[(ST((1 = Ba)S52 + BuTa(PTy)" ') —

(ST((1 = Bn) S5y + BuTo(PT2)"1y) +

o (TL(PT)" LP((1 = B,) S5 + B, To(PTy)" tz)) —

(T1(PTY)™ ' P((1 = Bn)S3y + BuTo(PT)" ')

IN
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< (1= an)ha|l(1 = Bn)(S3z — S§y) + BuTo(PT2)" (z — y)| +
anhn||(1 = Ba)(S32 — S5y) + B To(PT2)" " (z — y)|
< (L= on)hall(1 = Bn)(Szz — S5y
+(1 = an) || B To(PT2)" (2 — )|
Fanhn|[(L— Ba)(S52 — S3y)|| + anha||BnT2(PT2)" " (z — y)|
= (hp + hyBn — anhiy, + hianBn) | =yl + hiBallz — yl|
anhn Bl =yl + anhip (1= Bp)llz =yl + anBuhi]lz —yl|
= (hp + hyBn — anhiy + hiyanBn) | =yl + hiyBallz — yl|
anhiy Bl =yl + +anfahi |z — y|
= hallz -yl (3.32)
for all z,y € K, where h, = maa:{kn ,kg), é , } Letting h, = 1+ v,, it follows from
1<T[7Z, h? < e?25=n Y and oo vy < 0o that nhl& I2, h? = 1. Setting
Snm = Gnm-1Gnim—2..Gn (3.33)

for each m > 1, from (3.32) and (3.33), it follows that

n+m—1
[1Sn,mz = Spmyll ( H W)z -yl

for all z,y € K and Sy, ;mTn = Tntm, Snmq = q for any ¢ € F. Let
bnm = [[tSnmxn + (1 — )Spmaq1 — Sman(tzn + (1 —t)q1)|. (3.34)

Then, using (3.34) and Lemma 2.4, we have

n+m—1 n+m—1

b < ( H Ry len —all=C I 2D 7 1Sm@n — Snmarl])
. il
< Hh% ||acn—ql|—<Hh2 )|z nm — aull)-
j=n

It follows from Lemma 3.1 and lim H h2 =1 that lim b,,, =0

n—oo n—oo
j =n



Convergence of projection type iterative processes 17

uniformly for all m. Observe that

an,m(t) < ||Sn,m(txn + (1 — t)q1) - Q2|| + bn,m
= ||Sn,m(t$n + (1 - t)Ql) - Sn,mq2|| + bn,m

n+m—1

< (I m)litzn + (1=t — q2ll + bum
j=n

< (Hh?)an(t)+bn,M'
j=n

Thus we have limsup a,,(t) < liminf a,(¢), That is, lim |[tz,+(1—t)g1 —q¢2|| exists for all £ € (0, 1).
n—s00 n—00 n—oo

This completes the proof.

Lemma 3.4 Under the assumptions of Lemma 3.1, if E has a Frechet differentiable norm,
then, for all q1,q2 € F = F(S1) N F(S2) N F(1T1) N F(1y), the limit

lim (zn, j(q1 — q2))

n—oo

exists, where {x,} is the sequence defined by (1.10). Furthermore, if Ww({z,}) denotes the set
of all weak subsequential limits of {x,}, then (z* — y*,j(q1 — q2)) = 0 for all q1,q2 € F and
=¥,y € Ww({z,}).

Proof This follows basically as in the proof of Lemma 3.2 of [12] using Lemma 3.3 instead of

Lemma 3.1 of [8].

Theorem 3.4 Under the assumptions of Lemma 3.2, if £ has Fréchet differentiable norm, then the
sequence {z,} defined by (1.10) converges weakly to a common fixed point of Sy, S2, T and T5.

Proof Since E is a uniformly convex Banach space the sequence {z,} is bounded by Lemma
3.1, there exists a subsequence {zy, } of {z,} which converges weakly to some ¢ € K. By Lemma

3.2, we have
lim ||zp, — Sizp, || = lim ||z, — Tizn, || =0
k—o0 k—o0

for i = 1.2. Tt follows Lemma 2.3 that ¢ € F = F(S1) N F(S2) N F(T1) N F(T»).

Now, we prove that the sequence {z,} converges weakly to q. Suppose that there exists a subse-
quence {zy,, } of {x, } such that {z,,, } converges weakly to some q; € K. Then, by the same method
given above can also prove that ¢; € F. So, q1,q2 € F N Ww({zy}). It follows from Lemma 3.4 that

lg —a1ll? = (¢ — q1.5(q — @1)) = 0.

Therefore, g = ¢, which shows that the sequence {x,} converges weakly to q. This completes

the proof.
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Theorem 3.5 Under the assumptions of Lemma 3.2, if the dual space E* of F has the Kadce-

Klee property, then sequence {x,} defined by (1.10) converges weakly to a common fixed point of
Sl, SQ,T1 and TQ.

Proof Using the same method given in Theorem 3.4, we can prove that there exists a subsequence
{zn, } of {x,} which converges weakly to some ¢ € F' = F(S1) N F(S2) N F(Th) N F(S2). Now,
we prove that the sequence {z,} converges weakly to g. Suppose that there exists a subsequence
{#m, } of {x,} such that {x,,,} converges weakly to some ¢* € K. Then, as for ¢, we have ¢* € F.
It follows from Lemma 3.3 that the limit

lim |[tz, — (1 —t)q — ¢
n—oo

exists for all ¢ € [0, 1]. Again, since ¢, ¢" € Ww({z,}),¢* = ¢ be Lemma 2.5. This shows that the

sequence {z,} converges weakly to g. This completes the proof.

Theorem 3.6 Under the assumptions of Lemma 3.2, if E satisfies Opial’s condition, then the
sequence {z,} defined by (1.10) converges weakly to a common fixed point of Sy, S2,T1 and T5.

Proof Using the same method as given in Theorem 3.4, we can prove that there exists a sub-
sequence {z,, } of {z,} which converges weakly to some ¢ € F' = F(S1) N F(S2) N F(T1) N F(S2).
Now, we prove that the sequence {x,} converges weakly to q. Suppose that there exists a subse-
quence {Z,,; } of {x,} such that {z,,;} converges weakly to some g € K and g # g. Then, as for g,

we have g € F'. Using Lemma 3.1, we have the following two limits exist:
lim ||z, —q| = ¢, lim ||z, —q| = c1.
n—oo n—oo

Thus, by Opial’s condition, we have

¢ = limsup ||z, — 4|
k—o0

< limsup||zn, — gl
k—oo

= limsup [|[zm, — ||
j—o0

< hmsup||a:m] _qH = ¢,
J—00

which is contradiction, and so ¢ = g. This shows that the sequence {z,} converges weakly to g.

This completes the proof.

18
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